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CHAPTER 1

INTRODUCTION
1.1 Background and Motivation

In the recent century, the quantum theory was developed by several scientists
for example, Erwin Schrodinger, Paul M. A. Dirac, Richard P. Feynman, and Julian
Schwinger. We are the new physicist in current century that just study the enormous
prospect of the giant of this major. We have been studied a lot of quantum theory
until impress and appreciate for valuable of knowledge in quantum theory. The joint
of any knowledge is the joint between the theoretical study and the experimental
result. Therefore in this work we try to walk together between theoretical analysis
and experimental complexity. The motivation of this work is the fulfillment of our
knowledge and we attempt to apply this prospect with the low energy physics.

Modern microelectronic devices, solar cells, ultra thin invisible corrosion re-
sistant coating are prepared by using an exciting technique that is called Atomic
Layer Deposition, ALD.

In the recent century Julian Schwinger introduced and developed the Quan-
tum Action(Dynamical) Principle[4] (we can called in short name “QDP?”) which is
an important principle for quantum theory.

After Julian Schwinger the originality of quantum action principle published
the context of quantum field theory which was seen by Professor Edward Berg
Manoukian, he was totally appreciate that principle and renamed to the quantum
dynamical principle in his text book.[5].

In the chapter 2, some of compositions in the literature review there are the
explanation of the atomic layer deposition to create the thin film. In the present,
ALD is one of almost the popular of creating thin film technology. The next one,
in brief,we introduce quantum dynamical principle which is the powerful tool for
the quantum theoretical physicists. This theory is useful to create the fundamental
quantum quantity this is the transformation function which can be separated in two

attribute (xt|x't’) and (xt|p't’). The first one is called the propagator and the sec-



ond one is the transformation function. Both of type of transformation function are
introduced by J. Schwinger, provide the viewpoint of quantum propagator. The last
one of this chapter, is briefly of Green’s function that is the important theorem in
the quantum theory. Green’s function is described how the system transfers from
some state to the other state. In the chapter 3, significantly ,is described the cause
of the project that why do we build the thesis. In the other chapter is accorded to
the hypothesis, procedure and the expected result of the whole project.

1.2 Objctive

-To Study the quantum dynamical principle which is powerful method for
quantum mechanics and quantum theory

-To apply this elegance method to other field by using the transformation
function or propagator

-To obtain some mechanism or some parameter which could be explained the

adsorption mechanism on the surface of metalorganic substrate work piece.

1.3 Framework

In this work study only the theoretical prospect of quantum theory and apply
with the adsorption process on the metalorganic surface. Even though in the recent
time there are a lot of programmings and tools to obtain an easy model of the system
in quantum molecular dynamics such as Hatree-Fock approximation(HF), density
functional theory(DFT) but in this work we just present a small piece of theoretical

idea by quantum propagator which is an important behind the scene of their theory.



CHAPTER 11

REVIEW GREEN’S FUNCTION

In this chapter, we shall introduce important principle, namely, the Green’s
function which sometimes is called the transfer function in the linear time invariance

(LTI) for the engineers.

2.1 Introduction to Green’s Function

Mainly idea of this theorem come from British mathematician Gorge Green
in recent century[6]. This useful theorem is explain the relation between the source
commonly we introduce the Dirac-delta function d(z—z’) for the general influence that
be able to change the equilibrium state[[]]. The structure of Green’s function is the
impulse response function from the differential equation of the influence source.[8, 9]

Green’s function is the responded function of a linear differential equation
require the both of boundary and initial conditions.

According to the superposition principle, we may write the arbitrary func-
tion f(x) in form of linear combination f(z) = cofo(x) + c1fi() + cafo(x) + -+ =
i cnfn(x), where f,(x) stand for the basis of linear combination. The convolution of
Eroeen’s function with an arbitrary function f(z) is the solution of linear differential
equation for f(z). By the way, if we given the linear operator L(x) acting on the
transfer function in this case it is Green’s function we must be got the source term.

It implies that if there is a Green’s function G(x,z’) of a linear differential operator

f)(a:) acting on the distribution over some space, at a point z’, is a solution of

A

LG(z,2") = 6(x, ') (2.1)

where §(z, 2') is called Dirac-delta function. The property of Green’s function is able

be advantaged to solve the solution of differential equation of the form

Lu(z) = f(z). (2.2)

However, in normally, the Green’s function is imposed by the boundary and initial

condition. If such a function G can be calculated by linear operator L, then, if we



multiply Eq.( @ ) with the Green’s function f(x) , and integrate over a’, we get
/ do'LG(x — o) f(2') = / da'o(z — 2') f(2) = f(x) (2.3)

the right hand side is referred to Eq.( @ ), hence /dm LG(zx —2")f(2") = Lu(x) =

f(x). Moreover, from the property of linear differential operator for arbitrary function

b(€) that is / de fa(e ( / de (¢ ) then we obtain
Lu(z) = /d:v’ LG(x —2') f(2)

(2.4)
Lu(z) = L/dx’ G(x — ') f(x)

(2.5)

- / dz’ G(z — ') f (). (2.6)

Hence, one may obtain function of u(z) through knowledge of Green’s func-
tion and the source term, d(xz — z’). The process relies upon the linearity of operator
L.

The Green’s function be able to split into a sum of two kind of func-
tion,namely, there are the retarded and advanced Green’s function. Sometimes there
are three kind of Green’s function the another one is Feynman Green’s function.
The difference kind of Green’s function is occurring because we need to avoid the

singularities of poles in the complex plane, when we integrate the Fourier transform.

2.2 Green’s function of Poisson Equation

Consider Poisson’s equation for electrodynamics

V.-E=" where E——VQS—QA

€0

Then now we have the relation between electric potential ¢(t,x) and Green’s

function G(x — x')




and from the representation of Green’s function of scalar potential

~VG(x — %) = 0¥ (x — X)). (2.8)

Substituting Eq.( @ ) into Eq.( @ ) to obtain

~V2p(t,x) = /d3x 68 (x — x’)p(t’X/) = Pl x) (2.9)

€o €o

Consider above equation, it is amazed how the potential ¢(t,x) can depend

upon the charge density p(t,x’): at different points at the same time. The scalar
potential, ¢(¢,x), is immediate because of the Coulomb gauge condition V - A = 0,
which is not Lorentz invariant. The gauge-invariant physical field E and B are not

sudden and do describe Lorentz- invariant electrodynamics.

To evaluate the Fourier Transform of Green’s function
G(x) = / &k K Xy (k) (2.10)

and the definition of Dirac-delta function in 3-dimensional reads

d*k
0¥ (x) = / KX 2.11
9= [ Gaye (211)
If we apply Fourier transform of Green’s function in Poisson’s equation, then

_V2G(x) = —(ik)? / Bk exg(k)
= K2 [ a’k e™xg(k)

— /d3k |k 2g (k).
Comparison the result of above equation with Eq.( @ ), hence

- PPk .
d3k zk~xk2 k :/ ik-x
[ g = [ 55

or

(2.12)



The new version Fourier transform of Green’s function by substitute Eq.( ) into

Eq.( ), we obtain

" 1
d’k e*x 2.13
/ |k|2 27r) ( )
To evaluate the Green’s function by use the integration in spherical coordinate

d3k = |k|?sin(0) d|k|dfd¢ and the dot product of k - x = [k||x| cos(6)

/d|k| dé’ d¢ ’l‘kHX|COS

M 27T WSIH

- /d|k| a9 /027r dg eHkl[x] cos(6) sin(6)

1
(2

_ 2 [ ! i|k||x]| cos(6)
- (%)3/0 /K| /_1dcos(9)e

B cilklIx| _ o—ilk]|x]
~ @ o ikl

/ (IklJx) cilkl[x| _ o=ilkllx] 4
X :
!X\ 21 [ ||

sin [k||x|
(k) :
!X\ / K]

o gin(z) T

According to the calculus of residue we can compute / dz = 5 then
0 z
now we have
2r 27 1
G(x) = =2 = 2.14
)= P2 ~ dnlx (214)
. : ° sin(z) T
Appendix: Calculus of residue for evaluate I = / dz = 5
S— 0 z

There is a simple pole at z = 0 and we have to integrating upper half plane

or semicircle and the limit integrate be —oo to oo



Im7

"R . ReZ
j /oo SiIl(ZL‘) dr — /oo i "
—00 i —oc0 <
=Im <2m' Residue of c at z = O) . (2 because integral semicircle>
z
o (2 lim(z — 0) 5. 1
=Im 1lim(z — C =
T (z—0) 2
=TIm (i)
=7
% sin(x)

Therefore I = /

—00 X

/00 sin(z) gy
0

z 2

dx = 7, then the half of integrating is half of total value or

2.3 Green’s Function in Quantum Mechanics

In quantum mechanics the Green’s function is one of important tools to solve

the result of Schrodinger equation

2.3.1 1-Dimensional Free Particle

Let us see the free particle Hamiltonian is shown as the kinetic energy: H =

2
Hy = 2p— Time - dependence Schrodinger’s equaton as

m
mggz; = Hy (2.15)
ot
or

(ma - H) =0 (2.16)



/

Take to Green’s function formalism

0
(lhat — H) G (l’ztg; Iltl) =9 (I‘Q - l'1> 0 (tg - tl) (217)

The Fourier transform of Green’s function in k — space is described by

dkdw

B )2€i[kz(x2—x1)—W(t2—t1)]G (w, k) (2.18)
s

G (xoty; 21ty) = /

Substituting Eq.( R.1§ ) in to Eq.( ), to obtain

L0 dRdW iz —ay)—w(ta—ts
(zhat - H) / (2ﬁ)2e [k )=o) G (w, k) = 6 (20 — 1) 0 (t — t1)

RHS. — / ?5 d)ﬁ (ihaat —-H ) elh@zma)—wlt=t)iG (k)
s
2
_ dkdt;? Zhaa P ei[k(xz—xl)—w(tz—tl)]G(w ]{;)
(27) ¢ 2m ’
dkdw (.0 R? 9% |
_ 2V O k(e —a1)—w(ta—t1)]
oo ("7 ) e
dkd h? :
AT ;2) <ih(—iw)+2m(i/€)2> lHezman =220l (w0, k)
T
dkdw Pk
:/ (ﬁw _ )ez[k(mz—z1)—w(t2—t1)]G(w7 k)
(27r)2 2m

Now we will have Green’s function in k — space as

21.2
((12/€d)(42) (hw _ 2:;;) ilk(wz—z1)—w(ta—t1)] (w, k) = / %ei[k(xz—z1)—w(tz—t1)]G (w, k)
T ™
1

G(w, k) = (2.19)

—
(=)
2m



Substituting Eq.( m ) into Eq.( R.1§ ) and then evaluating as a usual integration

we should have

dkdw e?: []i] (Q?Q — .’I]l) — W (tg — tl)]
(27)° <77w _ W)

G (.’L‘th; .fCltl) == /

1 g didw et B (@2 — @) —w(t: — )]

2 hk‘2
We have the pole at w = — let us transform w +— w — — and dw — dw, we have
2m 2m
hk?
i [/{: (xg —x1) — (w + 2) (to — 751)1
G (eaty: 2rt) 1/dkdwe m
ZToto; x = —
2l2; T1l1 5 (277)2 o
, hk?
1 dk 7 [k’ (372 — 331) — <2H1> (tz — tl)] dew e—lw(tz—tl)
*%/ (2m) © / 2r)
Remark We have the special function is Heaviside-step function
dw e—iw(tz—h)
Oty —ty) = i _— 2.20
(b =t) = Hm | (220
An above equation becomes
_ hk?
. 1 dk ? |]<? (.CEQ — .Tl) — <2H1> (tg - t1)‘| . ' dew e—iw(tg—tl)
(zats;mtr) = ﬁ/ (2m) ‘ 0v ) omi w—ie

hk?
; de  ° [k’ (x2 — 1) — <2m> (t2 — tl)]
= ﬁ®<t2 — tl)/ @ (&

This session we devote to integrate the last term by redefine the exponential

(2.21)

integrand

. lk (22— 2) (Z’:j) (s — tl)] _ih (t;; t) [m%kt(ji—tlxl) _ kQ]
( )




10

_ _th(t—t) kQ_ka(xQ_xl)+(m<x2_$1)>2_(M)zl

| hts —t1) hts—t) h(ts — 1)
_ dh(t —t) [ m(xy — 1) 2 m?(zy — 11)?
T 2m (k_ Aty — ) ) Rty — )2 } (2.22)

Substituting Eq.( m ) into Eq.( ), we have
7
G (xztg; .Z'ltl) = ﬁ@(tQ — tl)

=t [, mms)ne )

_ 2(4 — 4.2
(2m)
Let us transform k£ +— k — M and dk — dk, to obtain
Rty —t1)
: iRty —t1) {2y — 21)? ih(t — t1>k
G (Igtg; ZL‘ltl) = 1@@2 — tl)e Q/Kf M / dk e 2m
h (2m)
(2.24)
We use the Gaussian integral
00 2
/ due ™ = /T (2.25)
—00 a
and setup
. Z(tg — tl)
“= 2mh
until now we obtain
im(zy — 1)°
h 2(ty — t) 9
i e mm
G (xoto; x1t1) = —O(ty — ¢
(1’2 2;T1 1) ( 2 1) o ih(t2 — 751)
i m(zg — a1)?
Ylh(tg — tl)

Eventually, we now obtain Green’s function for 1-dimensional free particle

im(zy — x1)?

G (zaty; a1ty) = %9(t2 —t) 27”;2(2_151) e 2h(t2=t) (2.26)



11

2.3.2 3-Dimensional Free Particle

In this case we attempt to calculate Green’s function of a 3-dimensional free

particle. Define free Hamiltonian

2 2 2 2
p Py + Dy, + D
H=—="2%2* Y = 2.27
0 2m 2m ( )

Time-dependent Schrodinger’s equation
ihg —Hy|Y(x)=0
ot Y -
Green'’s function for 3-dimensional is defined as

<2h(§t — H0> G(XQtQ;Xltl) = 53(X2 — Xl)(S(tQ — tl) (228)

Take to Green’s function formalism

(zhaat - H) G (Xata;x1t1) = 0 (X2 — X1) 0 (ta — t1) (2.29)

The Fourier transform of Green’s function in k — space is described by

Gty = [ e ) —w =ty (2o

Substituting Eq.( ) in to Eq.( ), to obtain



12

3 2 2 .
R (4 ) e
T mox

Fhdw [ o4 I 2] bl (o =x0) = w (= )]G (o p)
[ Gt it + g G k)

/ d?’k;d:u <hw ~ h2k2> cilke (ko = x1) —w(ta = 1)l G (s k) = RHS.
(2m) 2m

Now we will have Green’s function in k — space as

Since we derive Green’s function in momentum - space now we can express

in Eq.( .31))

1
2k2
-5
2m
Substituting Eq.( ) into Eq.( ) and then evaluating as a usual inte-

gration we should have

Gw, k) = (2.31)
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d3kdw 67; [k . (Xg — Xl) — W (tz — tl)]
(2m)? (m B h2k2>

2m

G (xato;x1t1) = /

/ d3kdw cllk - (x2 —x1) —w(ts — )]

e
w2m

2 2

We have the pole at w = —, let us transform w — w — — and dw — dw,
2m 2m

T h

we have

d3kdw e. [k' b =) (W i le) (2 tl)l

G (Xato; x111) =7 /

w
, hk?
d3k 1 . X2 — Xl) — E (tg — tl) dw e—iw(tg—h)
h/ / 2m) W
(2.32)
Remark We have the special function is Heaviside-step function
dw e—iw(tg—tl)
Oty —tp) = i _—
(2=t =l o e
An above equation Eq.( ) becomes
, hk?
1 d3k (3 [k . (X2 — X1> — <2m> (tz — t1>‘| dw e —iw(ta—t1)
ty:x1ty) = — li dwe ™7
G (xata; x1t1) h/ (27)° € 6_1>%1+Z 2w w — i€

= o) [ éj; ., [k el <Z§> - tl)l

This session we devote to integrate the last term by redefine the exponential

(2.33)

integrand

) [k' (xg —x1) — (ZE}) (to — t1)] = o (t22n; ) [Qm;l—:(.tixj ;)X1) — k21
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_ _ih(ta — ) 12 2mk - (X2 — X7) N <m|x2 —x1]>2 B (m|x2 —X1\>2
2m h(tg - tl) h(tg - t1> h(tQ - tl)

ih(ty —t1) m|xy — X | m?(xy — x;)

2 2
_ N 1) mXe = X1)” 2.34
2H1 (' | (tg — tl) > h2(t2 — t1)2 ] ( )
Substituting Eq.( ) into Eq.( ), we have

G (XQtQ;Xltl) = %@(tz — tl)

_Zh(tg ) |:<‘ |_m|X2 X1|>2_m2|X2_X1|2]
d’k 2 ty —t R2(ty — t1)?
x [ m At —t1) (t2 =) (2.35)
(27)
Let us transform |k| — |k| — mixs = x| and d|k| — d|k|, to obtain
h(ty — t1)
(s —17) A2 (X5 — X )? ih(ty — )

' Pk ———|k[?
G (XQtQ;X]_t]_) = %@(tg — tl)e 2% M / (27T)3 e 2m ’ |

| imlxy = in(ts — 1)

¢ B2ty —t Lo T [P 2. -——— K|
— 1Oty — t)eh 2(t2 ﬁ——?/dM/cﬂ/d¢MSM®e 2m

h (2m)” Jo 0 0

=27

. £m|X2 —X1|2 h(tz —t1>|k|2

= %@(tz —t1)e ho2(t:—t) \& / d\k|/ dcos(0) |k|* e 2m
(2.36)

We use the Gaussian integral

o0 on —au?  (@Cn—=1I [T
and setup
it~ 1)
2m

until now we obtain
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i el 2(t2 =) (2(1) — ! 2mm
G (xato; x1t1) = - O(ta — 1) 5 .
(2) [;Z@Q—tﬁlﬂ itz =)

ey B 20 —t) pn'
7Otz — tr)e 2 6T [ih(ts — 1))

i m(xg — x1)?

_d h 20t —t) m’
= Oty —t 2~
Oz —te 873 [ihi(ts — t1)]°

Eventually, we now obtain Green’s function for 3-dimensional free particle

i m 2 2h(ty —ty)
Oty —t;) |——— 2—t)
Otz ) l2m‘h(t2—tl)1 ¢

3 im|xy — x;|?
G (xoto;x1t1) =

2.3.3 Green’s Function for Linear Schrédinger Equation

(2.38)

In mathematic, non-linear differential equation is in the form degree of the

right hand side is greater than 1 as

Lf(x)=a".

An above equation will be non-linear differential equation where n > 1.



CHAPTER III

QUANTUM DYNAMICAL PRINCIPLE

This prospect has been demonstrated to useful tool about high energy physics
and particle physics. Moreover the quantum dynamical principle is able to apply and
study the low energy physics system i.e. atomic theory, scattering theory, the behavior
of material science and etc. The theorical formalism is offered on the transition
amplitude 6 (b, t|a,t’) is explained that the particle transfer from a position a and
time ¢’ to another position b with time ¢, as an occuring from any differing of some
variables in Hamiltonian operator e.g. external source term, mass, charge, etc. The
main idea for QDP is the functional derivative of Hamiltonian with respect to the
external source term. The benefit of the QDP is used for functional treatment of the

Hamiltonian in a formalism of Green’s function of the propagator.

3.1 The Dynamical Principle
3.2 Summary of How to calculate Propagator via Dynamical Principle

Time dependence Schrodinger’s equation

d
(1) = B) (3.)
1Ht 1Ht
ind e hyit=0)=Hle h ¢t=0) (3.2)
dt
U= 0)] = HU()(t = 0) (33
d
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Now we have the equation of motion for the time derivative of time-evolution operator
Summary

How to find the propagator by using the quantum dynamical principle
Definition

1) Notation of propagator
K (xato; x1t1) (3.6)
2) Transition amplitude
(Xato; X1t1) (3.7)
3) Chronological Time-Ordering
(...), or T(..) (3.8)
4) Green’s function
G (xato; x1t1) (3.9)

Procedure
2

1. Define the Hamiltonian operator in coordinate space H = 2p— + V(x)
m

Hamiltonian of source term

H(t) = —x-F(r)+p-S(7) (3.10)

The complete Hamiltonian

HOur) = 2 V(%) —x-F(r) +p- S(7) (3.11)

2m

Free particle Hamiltonian
HAN=0,7)=——x-F(1)+p-S(7) (3.12)
= H'(0, 7')|F,S=0 + FI(T) (3.13)

— Hy_o+ H(7) (3.14)
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2. Define the transition amplitude which satisfies above equation

<a2t2;b1t1), (315)
(agty; byty) @, (3.16)
<3_2t2; b1t1>0 (317)

where the first symbol is for the propagator of bound system, the second
one is the propagator of free particle with a difference time, and the last one is the
transition of momentum to position state at the initial time.

We attempt to reduce the following step by step to obtain the transition

amplitude (aste; byty). This can be expressed as

(xtq; pt1)o = exp {;X . p} exp {; <x . /dTF(T) —-p- /dTS(T)>:|

X exp [—; /dT/dT/S(T)@(T - T/>F(T/)] (3.18)

The first term in the right-hand side refers to the transition from p to x at the same

time, namely,

(xtIpt) =(x|U(t — )lp) (3.19)
=(x[p) (3.20)

= exp [;x . p} (3.21)

(3.22)

The expression of the transition amplitude at the difference time
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- )

(xt|pt)® =exp -—h/dT;n] (xtq; Pti)o (3.23)
A 5 \?

_eXp —ﬁ% d’T ((58(7‘)) ] <Xt2,pt1>0 (324)

Substitute Eq.( ) into Eq.( ) and limit S approaches to zero,

] 2
o _.o | i1 d
(xt|pt) ’s:o eXp { 7 2m dr <5S(T)> ]

X exp [;Lx : p] exp LZ:L (X : /dTF(T) —p- /dTS(T))]

X exp [—; /dT/dT’S(T)@(T — T’)F(T')]

—oxp |1 20 0)] e [ )

exp ; <X-/dTF(T) P drF(7)(t — T))}

X exp [—;2; [ [ @B -m)F )] (3.25)
By using the fact that
s(r) = T ¢ ) (3.26)
and
s(e(r ) =" e -7 (3.27)

(3.28)
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We define the new operation as 7 = max(7, 7’).
Now we come to the complete propagator with potential V' (x) which is the

characteristic of these system,

(xt|pt) = exp [—; [arv (-m 5F5(T)>] (xtpt) | (3.29)

— exp {_; [ar B’; 4V <—ih 5F5(T)>] } (xt[pt)ols_ (3.30)

Therefore, the transformation function can be expressed by the multiple of

- 5\
_ _° i (0)
(xtlpt) =exp | = / drV ( ih— (T)) xtlpt) | (3.31)
[ 5\ i1 5\’
=exp __h/dTV <_ZH5F(T)>_ exp [_th/dT <5S(7’)> ]
X (xt[pt)olp s (3.32)
These equation celebrate the quantum dynamical principle
5(at|bt’) = —%/dT(CLt\dH (q(7),p(T), 73 \) |bt") (3.33)
(3.34)
t
/ Slat|bt’) = (at|bt’) — (at'|bt") (3.35)
t=t’
= (at|bt’y — (a|b) (3.36)

= R.H.S (3.37)
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LH.S = —; /dT(at|5H (q(7),p(T), T; \) |bt) (3.38)
_ _; [ drtation (—m 5F‘S(T),m 68(27)’7; A) be') (3.39)
_ _; [arm (—m 5F5(T) Jih 68(;7)’7; A) (at|bt') (3.40)

The final answer for dynamical principle is

? L0 0
(at|bt’) = exp [—h /dTH <_m5F(T)7m5S(T)’T; A)] (xt|pt)olp g—o (3.41)
3.3 The Birth of Dynamical Principle

The general Hamiltonian operator
H(t,\) = Hi(t) + Ha(t, \) (3.42)

where A\ refers to any parameters such as mass, coupling constant, pre-
scribed frequency, number of atomic, charge of particles, magnetic moment, external
sources,etc.

Suppose, we have the adsorption coefficient to the parameter A which is
0 < A < 1. This value of parameter A or adsorption coefficient means that if the
adsorption on the surface depends on this value.

Consider the time evolution operator, which is the exponential of Hamiltonian

operator

U(t,A) = exp [—;H(t, )\)t} (3.43)

Prove with time-dependent Schrodinger’s equation to show that the unitary
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operator is function of £ and A ,

U(t, ) = exp :—;H(t, )\)t} (3.44)
~ exp —; <H1 (t) + Ha(t, A))t] (3.45)
~ exp :—;Hl(t)t - ;Hz(t, A)t} (3.46)
— exp :—;m (t)t] exp {—;Hg(t, )\)t] (3.47)
— UL(t) - Un(t, ) (3.48)

apply with Eq.( @ ) to obtain

m(i UL (t)Us(t, N)] = ik :thl (U, A) + U, (t)thg(t, )\)] (3.49)
—ih :PWUQ(@ A + Uy (t)W] (3.50)
- <H1 + H2> U ()Us(t, \) (3.51)
= H(t, U (t, ) (3.52)

Look at the bottom equation, forthe time-dependence Schrédinger’s equation

reads
'hd U(t) = H(t)W(t
() = H(0U(0)
(3.53)
(1) = H(1)| (D) (3.54)

and we have the definition of state (x/|¥(t)) = (2, t|¥), one has



ih((;t (' t|W) = H(t) (2, t|V) = (2, t| H(t) |¥)

d
h— (2’ t| = (/, t| H(t
ih 3 (@'t = (@ H D

and similarly to the adjoint conjugate

(zhjt <x’,t\>T = <<w’,t! H@))T

d
—ilig |2 1) = Hi(t) (2!t = H(t) |2/, 1)

23

(3.55)

(3.56)

d
From ithl(t) = H,(t)U;(t) and zha 1 (at| = 1 (at| Hi(t) we can see that

dt
physical states (at| are clearly related to the state ;(at| or

(at| = 1 (at| UT (U, \)
Prove

U(t,\) = UBU(,N) = Ui () Us(t, \)

Ut N0 (1) = (2, | U(t,\) |8 = (x, | Uy () Us(t, \) | ¥)

Therefore (z,t|U(t) = (x,t| Uy (t)Ua(t, A) or

(a,t|U(t) = (a,t| U, () Us(t, \)

(a, t| UT (U () = (a,t| UL()UL(t) Ua(t, A)

(3.57)
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3.4 Definition of Quantum Dynamical Principle

In this section, we devote to prove along mathematical structure of the quan-
tum dynamical principle. By using the derivative of transformation function with
respect to time. Define the transformation functions at a difference time ¢’ and t by

varying with 7 = (¢, t)

(at|a'T) (3.58)

(b'r[bt") (3.59)

zh(i_ [{at]a'T) (b'7|b't")] = ik |{at] ;T la'T)y (V'T0't") + (at|a'T) (b’7'| |b' )1 (3.60)

o(T, A Z'H N
= ih |{at| —671H( I la"y (V'T|0't") + (at]a'T) <b'|—e h (. X)r b’t’}] (3.61)
i EHQ T, A\)T
_ih <at|< Hy(, A))eh (AT ey
7 —ZHQ 7, \N)T
+ {at|a'r) (V] (-hHQ(T, /\’))e pi1a(m A) b’t’)] (3.62)

[(at|( H(r, A)) 7y (B + (at|a'T) (7] (—;_LHQ(T, X)> |b’t’)} (3.63)

m<at|( H(r, )\)) la'r) (BT |6 E) + Rlat|a'r) (Hr] (—;%HZ@, X)) ) (3.64)
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= (at| — Hy(7, \) |a'7) (W7 |bt") + (at|a'r) (t'7] Ha(r, N) |bt') (3.65)
= (at|a'r) (t'r| Hy(r, N') [bt') + (at| — Hy(r, \) |a'r) (o' |bt') (3.66)
— (at|a'r) Hy(r, N') (W'7[bt') — (at|a’r) Hy(r, N) (b7 |bt') (3.67)
= (at|d'T) [Hy(r, X') — Hy(r, \)] (B'7|bt') (3.68)

From H (7, \) = Hy(7) + Ha2(7, \), we substitute intoEq.( ), to obtain

mi [(at|a'T) (V7 |b't")] = (at|a'T) [H (T, N') — He(r) — H(T, \) + He(ry] (' |bt’)

(3.69)
To determine X as A = A+ d\ an
d
z'hd— ({at|a'T) (U'T|b't)] = (at|a'T) [H(T, X + dN\) — H(r, \)] (V'T|bt") (3.70)
T
= (at|a'T) §H (T, \) (b'T|bt") (3.71)
Setup o’ = V' for arbitrary constant, we have
ih d [{at|a'T) (b'T|b't")] = ihi [{at]a'T) {a'T|b't")] (3.72)
dr Yy dr
= (at| 0H (7, \) |bt") (3.73)
=>
. d / /
Zhg (at|bt’)y = (at| 6H (T, \) |bt") (3.74)
Integrate over 7 from t' to t, to obtain
t it
/ d (atfbt') = — / dr (at| §H(r, \) [bt') (3.75)
t! t/

5 (at|bt’) — —; /tf dr (at| SH (7, \) [bt) (3.76)
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Hamiltonian correspondence as H = H(q,p,7; \) in Heisenberg picture
Ut (r, A H(q,p, 7 \)(7,A) = H(q(7),p(1), 75 A) (3.77)

It is allowed to the § (at|bt’)

5 (at|bt’) — ;_L /tf dr (at| SH(g(7), p(7), 7 A) |bt') (3.78)

This equation is celebrated Schwinger’s dynamical (action) principle or the quantum
dynamical principle. It is expressed in terms of the physical states |at) and |bt) which
depend on A. Needless to say, ¢ and p in equation may carry indices corresponding

to various degree of freedom.

3.5 Functional Treatment via Dynamical Principle

Given the Hamiltonian, in general, it is combined by two part of kinetic and
potential energy
H = p—Q + V(x) (3.79)
2m
Compact to the external source

H'(1,\) = 2an1 + AV (x)—x-F(r)+p-S(7) (3.80)

If we setup A = 0 this implies that we now consider the free particle, or

p2

H(1, N2 = om + AV (x)[,op —x-F(r) +p-8(7)
H'(1,0) = 2prj1 —x-F(r)+p-S(7) (3.81)

Consider Eq.( ) refers to the system which there is no potential, thus
we can say this is to free particle system. Consequently, for show how QDP is an

elegance and a powerful tool to find the transformation function
(xt|pt’) (3.82)

where x and p is position and coordinate by its imply that nonresponse at

time ¢t and t’ or final and initial time respectively.
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3.6 The dawn of quantum dynamical principle

We can prove from the variational of transformation function in Eq.( )

we obtain

5 (xt|pt') = (-h) dr § (AV(x)) (xt|pt) (3.83)

After we integrate along A = 0 to 1 we can eliminate A that appear in transformation

fr= (1) |
fus ()]
g

function as

dA xt|pt’)
0
dA

dr
A=

dr
A=

o) = exp [ () [ dr Vo) Gxtlpr)
/ { t n (0)
(xt|pt’) = exp K—h) [ ar V(x)} (xt|pt) (3.84)
4]
According to the Heisenberg equation we can replace x and p by —ih SF(7) and
T
)
ih 5S(7) respectively. To evaluate the vanishing of external source or ¥ =S = 0, we
T
)
can substitute x = _méF( ] into Eq.( ) we have
T

(xt|pt') = exp K—;) /t/t dr vV <_ih5FiT)>1 <Xt|pt,>(0))1«“,s=0 (3.85)

Look at Eq.( ), it may refer to the transformation function of the free particle

system and is expressed as

/ Z t 2 /
(xt|pt")? = exp [—h /t dr (;ﬂﬂ (xt|pt') (3.86)

or

(xt|pt’) o (3.87)
F,S=0

N e PR [ (i
(xt|pt") ‘Fvso—expl om e dr <Zh58(r)

We can see the last term, (xt[pt’) ), may refer to the transformation function
of external sources which generate an equation of motion and satisfy

A

H(r)=—x-F(1)+p-S(7). (3.88)
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This Hamiltonian has no both of kinetic and potential terms but there are the source

term which satisfy that the external source F generates x or space translation and

for source S generates p or momentum translation.

We arise to Hamilton equations which are

dx . OH
X" S(7) (3.89)
dp . o0H
T _—p=—_"_—F ‘
dr P ox (7) (3.90)
and
dH O0OH
O or (3.9
From Heisenberg equation we can see that x operator at time 7 in the interval
T=(t,1)
X = iX(T) = S(7) (3.92)
Cdr N :
x(t) t
/ dx = [ dr S(7) (3.93)
x (") t/
t
x(t) —x(t) = [ dr S(7) (3.94)
t/
t t
x(t) —x(t) = [ dr (0)S(7)+ [ d7 (1)S(7) (3.95)
t/ t
turn-off turn-on
t
x(t) = x(r) = [ dr' (r = 7)8(7) (3.96)
t/
t
x(1)=x(t) — [ dr' O(r — 7)S(7) (3.97)
t/
and similarly to p operator
5= Lp(r) = F(r) (3.98)
p= [ p7) =27 .
p(t) t
/ dp= [ dr F(7) (3.99)
p(t/) t/
t
p(t) —p(t')= | dr F(r) (3.100)
tl
t t
p(1) —p(t) = | dr (O)F(r)+ | d7 ()F(7) (3.101)
turn-off turn-on
t
p(r) —p(t) = [ dr" O(r — 7 )F(7) (3.102)
tl
t
p(7) = p(t) +/ dr' ©(r" — 7)F(7') (3.103)
t/
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Their implement on the source p turn-on at time 7 = (¢, 7) and for x operator
turn-on at time 7 = (7,t) or after operator p turn-off.
where x and p in square bracket on the right-hand sides of the above two

equations are Grasmann number and we have used the relation

o (xt|x(t) = x o (xt] (3.104)

p(t) [pt') = [pt')o P (3.105)

We can see that

(xt|x(7) [pt'),_y = {xt]x(7) [pt),
= (xt]x(t) ~ [ dr' O(r ~ 7)8() It}
= (xt]x(1) o), — el [ dr’ O(r = )8() Ipt)g
= (xt]x ot} — (xt] [ dr' O(r — 7)8() It}

_ [x ~[ar e - T')S(T')] (xt|pt'), (3.106)

t/

and similarly to p(7)

(xt| p(7) [pt') =g = (xt[ p(7) IPt),
= (xtlplt) + [ dr' O — IR () ot}
— (xt| p(¥)) [pt'), + (xt] /tf dr' O+ — 7)F(7') [pt'),
= (x| p Ity + (xt] [ dr’ O — 1)F() [pt),

= [o+ [ 0 = n)F ()] (xtlpt),. (3.107)
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Al

As for A = 0 at the coincident time or the same time, Eq.( B.106 ) and

Eq.( ) can be rewritten as

—mé}; (xt|pt), = (xt| x(r) [pt'), = [x - t/t dr' O(r — T')S(T')} (xtpt'), (3.108)

and

~iho (xilpt), = (<t p(r) [pt)g = [p + [ dr' O~ 1)R()] ety (3.109)

Now integrate equation Eq.( ) and Eq.( ) to

d(xt|pt) i rt e [ SN0 o
[ L [ - [ ser 0] @

(xt'|pt’) h L/

To obtain

n[@“'l’ﬂ = [[[arre)x- [[ar [ s@ier - mFe)] @

(xt|pt’) = (xt|pt), exp (; | [ aremx- [[ar [[arsehew - (o))

= exp(}ixp) exp (; [/t,t drF(1)x — /t,t dr t/t dr' S(r")e(r’ - T)F(T>D

— eXp(i){p) exp ( t,t drF(7) x> exp (_721 /t/t dr t/t dr’ S(r)e(r' — T)F(T)>

h h
(3.112)
and for p also
d<Xt’pt/> Z t |: ¢ / / / :|
———— L =—— [ drS d —7)F 11
/ = 5 ), 4T (1) |p+ A7 o(r — 1)F(1') (3.113)

' [éj{(:/‘;?)} - _; { t’t dr8(r)p + t’t ar t/t dr S(r)8(r - Tl)S(T,)] (3.114)

To obtain
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(xt|pt") = (xt'|pt’), exp (—i [/t drS(r)p + th th’ S(T)e(r — T’)F(T’)D
= exp< ) ( { drS(r p+/ dr } dT S(r )@(T—T')F(T')D
_ exp( ) ( dTS ) exp <_h /t/ dr } dT' S(T)O(1 — T/)F(TI>)

Look at the expectation of pure source Hamiltonian

L 0 0
H(x,p,7)=H <_m(5F(7)’2h(58(7’)>

gl / o
(xt| B [pt')|_ =

(xt| —x(7) - F(7) + p(7) - S(7) |pt’)

) ) )
= (xt| — Zh5F(T) +Zh58(7-) |pt’)

A=0
F,S=0

From the time-dependent Schrodinger’s equation, we obtain

o d A
zhE (xt|pt'), = (xt| H' |pt’) o

L0 0 ,
= (xt| _2h5F<T) +m(5S(7) |pt’)

A=0
F,S=0
Devided by ih
d 4] o
— (xt|pt’), = (xt| — '
dr (xtlpt) = (x| OF (1) + dS(7) Pt A0

substitute Eq.( ) and Eq.( ) into above equation

= atlpt)y = fxtl — 3 [xtt) — [ a7’ O~ 1)S(+)]

+ [p(e)+ [ ar o = F ()| b))

FSO

= [+ (x= [[arer —ns@)) - 1 (b+ [ drei —)FE))] bt

(3.115)

(3.116)

(3.117)

(3.118)

(3.119)

(3.120)

(3.121)

(3.122)

(3.123)



We integrate along time t = (¢',t), we already have

/d<<xﬂpt’>o_i tdfx_/t/ ar [ “ar'e(r — )S(r)

xt|pt’) h Jv
/1: _ / _ / /
% dT p h dT dT O(r — "F(r')
tlpt’ [t
n 7<X [Pt 2 [ arx— —/ dr dT'@(T —7)S(7)
(xt'|pt’), hJu % t
/I: / / /
_! _ YR,
~ % dTp h dT dT O(r — "F(r')

The result show as in below

(xt|pt'), = (xt|pt’), exp / drp - dT'@(T - ()]
= (x|p), exp { / drp — /t/ dr } dT O(r — T/)F(T/)}
= exp(hxp>
X exp {; tlth X — —/t/ dr } dT o(r" — 7)S(r’ )]

xexp{—/dTp 7 dT ldT@(T—T)F(T)]

Consider the variational of our transformation, we have

5F5(T) (xtlpt'yy = + [x = [ 7' 0 = )8()] (xtlpt),
and
sty (oo = 3 [+ [ ar' €07 = B (xtlpt),
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(3.124)

(3.125)

(3.126)
(3.127)
(3.128)
(3.129)

(3.130)

(3.131)

(3.132)

Solve the solution of transformation function by integrating Eq.( ) as

ézﬂifl % {p + /t dr'e(r — T')F(T’)] 8S(7)
/ <§;§7|51|)I;t/ = ﬁ/ {p—O—/ dr'e(r — T)F(T/)] drS(r)
% { dTS } dT t/t dr'S(1)0(r — T’)F(T’)]
8 léjﬁi ] H drS(r ,t dr t,t dT'S(T)@(T—T’)F(T’)}

(3.133)
(3.134)
(3.135)

(3.136)
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The result show as in below

(xt|pt), = (xt'|pt’), exp { / dr p — dT O(r — F(r )] (3.137)
— (x|p), exp [— / drp— 3 dT dT'@(T _ T')Fw)} (3.138)
= exp(hxp) (3.139)

X exp [—/ drp — h dT dT'@(T - T/)F<T,):| (3.140)



CHAPTER 1V

ATOMIC LAYER DEPOSITION

Atomic layer deposition is one of several processes in material science of
growth or deposition the thin film (this mean that the thickness less than 5 microm-
eters) on the surface of substrate.

This method allows to deposit thin film of a variety of materials by tak-
ing advantages of sequential chemical processes that occur in a specially designed
ALD reactor. The most important components of ALD reactor, that uses gas phase
chemicals are shown in this simplified model.

The chemical, that are used for the deposition, are called precursors and
enter the reaction chamber along with the carrier gas. A vacuum pump is used to
ensure a low pressure and that the reaction by products and precursor leftover are

removed. The precursors enter the reaction chamber one at a time and react with

|
TMG Exposure ‘ AALdSOl”Pt1011> Desorption
urv urr
CH,, CH, CH,
Ga— CH, Ga— CH, Ga— CH,
CH, CH, CH,
@ CH,  CH CH,  CH
HO OH Ga Pa
| \ 0 0
0 OH CH, ! [
| | 0 0

I
Gallium Oxide - Gallium Oxide

Plasma Irradiation

Desorption
H H H

HE()(«) (.()Tv HJ()r) u)r> o Ol o o O On-

H:?a corv U
m CH CH, CH,  CH,
OH JOH OH, OH NS N/
N/ Ga (Isa

i | 0 0
? ? CH, f CH, |

OH OH ? Cr.‘

\ |
- Gallium Oxide Gallium Oxide

Figure 1 A model of Ga;0O3 oxidation and adsorption process on SiO; sur-
face
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the substrate in a self limiting manner. As the substrate is repeatedly exposed to
different precursors a thin film of desired material is deposited in each cycle. The
thickness of a thin film depends on the number of the cycles.

As an example would be the deposition of gallium oxide GasO3 on a silicon
substrate by using trimethylgallium (TMG) or Ga(CHz3)3 and water vapor as precur-
sors and oxide OH™ as carrier gas[l, 2]. In this process the deposition cycle consists
of four steps.

In the first step, gallium oxide GayQOj is inserted into the chamber and that
reacts or purges with the hydroxyl group i.e. hydrogen chloride of hydrochloric acid
(HCI) on the substrate surface, forming the first layer. As a result, hydrogen chloride
is produced as some hydrogen gases are removed from the galluim oxide and hydrogen
from the hydroxyl group. The excess trimethylgallium (TMG) and hydrogen chloride
are then removed from the chamber in the second step by purging with the carrier gas
be hydrogen gas. In the third step, the second precursors, water vapor (at the plasma
state), is inserted into the chamber and that reacted with the gallium oxide on the
surface. As a result, methyl CHjs is replaced with hydroxide and gallium dioxide is
formed[lL].

Finally, in the fourth step, the excess water vapor is purged from the cham-
ber with carbondioxide CO,, leaving behind the first layer of gallium dioxide. By
repeating this cycle, a film with desired thickness can be deposited.

The structure of the deposited film depends upon the substrate tempera-
tures. For example, amorphous film scan be obtained at lower temperatures and
crystallized films at higher temperatures. The substrate material and the thickness
of the deposited layer.

The advantages of atomic layer deposition process is easy to control the
thickness of the thin film. The deposition of multilayer is straightforward because
the thickness depend on the number of repeat cycle. Moreover, ALD can be used for

complicated surface material even high complexity.



CHAPTER V

CONCLUSION:ON THE INTERACTION OF
ADSORPTION PROCESS

The study of adsorption is importance in the field of surface science. Often
there are many important step in the preparation of a device such as in the growth
of semiconductor devices. But adsorption can also be of significant importance in
industrially relevant processes such as in the production of coating car or house glass
and coating surface of jewelry to make the hard surface. The most significant example
is chemical catalysis since the reactants have to adsorb on the clean surface before
they can react. But also from a fundamental point of view the physical and chemical
factors determining adsorption processes are most interesting.

In this chapter, we will show the behavior of atomic adsorption on the sur-
face and introduce the basic quantities necessary to explain the adsorption. After
classifying the different ways of adsorption process the necessary theoretical tools can
use to treat these systems will be shown.

We can accord an article from W. Kohn 1994, which describes the potential
for atomic adsorption via adsorption coefficient[10, 11] approaches to square root of
energy, s(E) — EY2. For the propagator which can be describes the behavior of
quantum system by using the quantum dynamical principle. According to this paper,
author prefer the behavior of adsorbed atom on surface to be the same with a step-
potential and the energy of atom is the eigenvalue from Schrodinger equation with
Bloch theorem, we suppose the potential geometry is the periodic function, u(z) in

one-dimensional, for modeling the behavior of clean surface.
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Abstract

This paper aims to present a calculation of energy levels of (12-6) Lennard-Jones potential of the quantum mechanical
system of the bound state problem by using finite difference methods (FDMs) with a truncation error © (hg) for
constructing a proper Hamiltonian matrix and calculating the eigenvalues (%) and eigenvectors (' ) from this matrix.
The interaction potential between two-particle system in the atom is in the kind of attraction and repulsion. As a result,
we represent the energy in each level through a unitless energy parameter { & ) and the radial probability distribution
of energy levels is also presented. Moreover, we also illustrate graphs of radial probability distribution with respect to

the distance in each energy level.
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Introduction
The interaction at quantum scale between two atoms is

often described by the Lennard-Jones potential™*:

() =u|:(f; /'r)y”'—(_i;, / !”)k], M

where #o/ Zmrf, A is the Plank's
constant divided by 2T .M stands for the reduced mass
of two atoms and r, is the equilibrium distance or the
classical turning point of atoms which is the minima of
interaction potential. The ¢ is the intensity parameter of
this potential, as in the bound state energies are defined
the intensity range of & =0. The term that stands for
the attractive part is ™ and the repulsive term is
represented by # . The exponents of 2k and
represent the short and long range parts of the potential.

These are divided into three different values, i.e.,
with % = 4 for the case of interaction between atom and
jon collision®®, and % =6 for the two neutral atoms (the
usual Lennard-Jones potential) or a familiar van der Waals
potential’, and & = 7 for two retarded atoms potential as
known as the Casimir-Polder potential between two
neutral polarizable atoms”.

To explain the interaction between two-atom
problems in the quantum point of view, for the simple
case, we deal with the Schrodinger equation which is the
equation of motion for the quantum system. It is difficult
to solve the exact solution from the equation of motion
which is always expressed by a second-order differential
equation. Many problems reduce to the coefficients of a
polynomial or to the Frobenius method”"". We can
evaluate an analytical solution as well as the numerical
method to solve the problem '™, In this paper, we show
how to solve the Schrodinger equation numerically by
using a finite difference method with a specific interaction,
namely the Lennard-Jones potential. The latter potential
is expected to be an interaction potential in the reversed
process of making a bound state for the atomic layer
deposition thin flm technique for our future work. So our

present study will be beneficial for that future project.
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The formalism and method
In order to analyze a spherically symmetric system we

write the general form of Hamiltonian as

Ihyr=1Ly, @
and for
=3 r2
H = p o L 3 /.
2m 2my (3

where 5 stands for the linear momentum
operator, ]: is the angular momentum operator and ,T;'
is for the interaction potential. The (12-6) Lennard-Jones
potential can be expressed in term of the radius as
(numbers in round bracket are the exponent of two terms

in square bracket respectively)
/I" 1'2 (f; \ib
&) ] “@

where 1 is the reduced mass of two particles,

V,n=

e
Zmzf

¥ represents the relative distance between the particles,
T is the equilibrium distance or the classical turning point
and © stands for the intensity parameter of the potential.
The bound state energies, which are defined by the
angular momentum quantum number L. are shown in
figure 1 for various values of its angular momentum. The
relation of potential (¥ ) and the relative distance (*)
following from eq. (4) is shown in Figure 2.

Substituting eq. (4) into the Hamiltonian eq. (3)
leads to the Schrédinger equation; then, we use the
separation of variables method to define the wave
functions in term of radius, azimuthal and horizontal

angles as
W(r,6,4)=R(r)&{6)D(4). )

This method is very useful in the spherical
symmetry. Following this assumption, we obtain the
partial differential equations including of radial and

spherical harmonic wave functions. The equation of

Figure 2 M. Chomphet , A. Phonchantuek , P. P. Pansila , N. Maneeji-
raprakarn ,S. Sukhasena Journal of Science é Technology MSU.

2019 Jul 1;38(4).
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motion that is obtained in the radial wave function with

the spherical symmetry is shown as follows.

B df,d ()
“ar (R R
Vi, (r)R(r) =ER(r). (6)

For the expression of the radial wave equation
in terms of unitless radial variable, we let 2 =r/r,, and
the unitless energy parameter we also let &=2mr” E/ &%,

So the new radial wave function is as follows.
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w(z)=R(r}. @

Then the equation of motion in eq. (6) and (7)

can be rewritten as

\

‘_O-[ ,_Iu ___iﬁ} }1-'(:) = Fiw(z]_ 8)

The atomic unit is usually used in the S| unit for
the solutions. However, for convenience we choose the

unit of physical quantities as followed in Table 1.

Energy Parameler, &
o ch . =
G o= 3 =]

<

ey
o

-40

0 50 100

L0 200 250 300

Tntensity of Potential, a

Figure 1 The bounded energy parameter versus the intensity of Lennard-Jones potential by varying the intensity of

range of 0= = 300. This relation shows the ground state of the angular momentum quantum number
#=0,1,2,3,4,5 and the first excited state £ =012

¥(r)

|/ .
Figure 2 Generalized Lennard-Jones potential Vi (i‘). ris the radius and "7 is the equilibrium distance (the das-

sical turning point of the minima of potential).

Figure 3 M. Chomphet , A. Phonchantuek , P. P. Pansila , N. Maneeji-
raprakarn ,S. Sukhasena Journal of Science é Technology MSU.
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Table 1 Relationship of quantity between Sl and atomic units

Quantity Sl unit Atomic Unit Comparison
Energy J, eV Hatree 1 Hatree = 27.2 eV
Wass kg, evic? m, 1m = 9.1%x10*kg
Length m, A Bohr's radius 1 Bohr's radius = 0.529 A

For simplicity, we set i=1, m, =1, l =1.
4mg,

1. Procedures of numerical methods

According to the partial differential equations in
eqs. (6)-(8), it is dificult to solve for the exact solution.
To solve the approximate solution for sake of brevity, we
introduce the numerical method for this problem. In this
article, we prefer to present the method that is used to
solve for the eigenvalues, A and eigenvectors, ‘¥ (or
eigenenergies and eigenstates respectively), by using the
finite difference method on the real space.

The fnite difference method'®"” is the develop-
ment to estimate the solution of a differential equation.
Some coefficients come from the Taylor series. The small
step size is defined as h and the coefiicient is brought
to multiply with parameters. We show how this method

works as following:

feth)=f(x)+hf"(x)

"o B o 4
+§]’ ();)+§/ (x)—b—n (h ), 9)
and
Fla=h)=f(x)=if"(x)
B s _h_j a1 4)
51/ (1) =5 (x)+o (#*), -
where
P26 r@=0r0),
: e
Fx)===f(x).
(*) dx () (1)
o (k") th

is called the n™ truncations error. The

combination between eqgs. (9) and (10), leads to

S c+hy+ [ (x=h).

:2]‘(,r)+h2_/"'(_r)+o (‘h“) (2

As for the centered two points stencil for the first
and the centered three points stencil for the second order
derivative approximation, are shown as in eqs. (13) and

(14) respectively,
vy flxen)=f(x=h s
Fxp=24 )211( ) (),

and

1'(x)=

(x+h)=2[(x)+/[(x=h
S W2/ o)y
h (14)
Changing the indices of implementation intoi,
we have the first and second derivatives in terms of

respectively as

t .f;; 7.}‘;7 2
fi=rtiEo (7). (15)

f= N e 40 (f‘l:)

I (16)

Figure 3 Define the position in finite difference method

2. The Eigenvalue equation and estimated

values by using finite difference method
According to the quantum matrix mechanism as
iz —2%. an
where ﬁ is the square Hamiltonian matrix, in
which every diagonal elements does not vanish. The
specilic vector il is called the eigenvector which can span
in term of matrix 8} and multiply by the constant by s
the so-called eigenvalue. Then, we introduce the deter-

minant equation, to ind the eigenvalue as

Figure 4 M. Chomphet , A. Phonchantuek , P. P. Pansila , N. Maneeji-
raprakarn ,S. Sukhasena Journal of Science é Technology MSU.

2019 Jul 1;38(4).



Vol 38. No 4, July-August 2019

det|F1-12)=0, (18)

where L. is an identity matrix /7. Consider

the energy level from the wave function only the radial
wave function in eq. (6) by using the finite difference
method, the equation of motion in the radial part yields
as eq. (19). By using the atomic unit, we can create the
update equation

which is the matrix formalism in eqs. (20) and
(21)

2w, -w,

W —2W W,
e

(19)
. 1 .1 2 e+
Ly a] (A G
+o—[ ]12_ ]n: + f+1|i ‘lk_l
(=) (=) (2 =
. (20)

multiplying by (A:)i on both sides of eq. (20)

to obtain
W, [ALJ,I]erE [B(J]Jr‘ALJ [(f’,H]
:(.f_\.:)l EW
=Aw.

(1)

In this paper, we consider only the radial part
wave function, R, because only this part yields the
eigenvalue in each states. The coefficients in eq. (21) are
used to create the Hamiltonian matrix ﬁ which is the
NxN square matrix. As in the calculation for the
eigenvalues and eigenvectors, we have to use this

Hamiltonian matrix where the parameter of eigenvalue is

. The eigenenergy is in the form 0f£=,l/(Az) ’
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inally, we calculate the wave function x from this
method. The solution of % or £ is the diagonal matrix but
7 is in the column matrix. The treatment of the
Hamiltonian matrix is to concern in the indices ¢ from 1
to N. We obtain the eigenvalue equation as follow in the

eqs.(22) and (23):

(1 0w W)
1 W, W,
e =g
1 Wiy Wt
L0 10w, Wy ) 22)
B, €; © ] 0 0
4y By G, 0 0 0
=] 0 A; By €, 0 o
0o 0 0
0 0 0 A}\',N L By Guwa
(23)

The computational solution using the finite
difference method, in the implementation, we define the
(L)

radius between two particles equals 5 Bohr radius
by spanning the small pieces of area of 2000 slots
(N is a number of Max Step). Each slot is called a step
size (Az=Step Size =1/ N'). We let the intensity of
potential T = 2601 by using the relationship between the
unitless of energy and intensity potential parameters® in
figure 1. The ground state and the excited states are
defined by the principal quantum number 7> and the

angular guantum number, £

The results of numerical method

According to the ground state energy of 7 =1 and £=1
where these quantum number refer to the S-orbital and
the excited energies of /7 >1 refer to the higher orbitals.
The ‘radial probatilty distibition n =% .| W’

! ¥ %
74T is shown in figures

versus
the unitless ratio of radius < =
4(a)-4(e) with the increasing of the energy parameters of
bound state € for the first-ive states i.e. =1 to 5 equal
to -28.5887,-1.2399, 1.4189, 4.6293 and 9.3165 respec-
tively.

Figure 5 M. Chomphet , A. Phonchantuek , P. P. Pansila , N. Maneeji-
raprakarn ,S. Sukhasena Journal of Science é Technology MSU.
2019 Jul 1;38(4).
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Figure 4 Plot of the radial probability distribution as a function of z where (a) The ground state n=Lf=1, and
& =—285887. (b) The 1* exdited state, ?=2./=1, and £=-1.2399. (c) The 2™ excited state,
n=30=1, gng £=14189. (4) The 3rd excited state, #=%¢=1, and 6§=4.6293. (&) The 4"

excited state, #=35.¢=1. and £=9.3165

Discussion and conclusion

The bound state energies of two-particle system
in the Lennard-Jones potential are studied in several
states and correspond to the spanned wave function in
each quantum state. We have considered the numerical
solution by using a finite difference method and showed
the graphical solution by the radial probability distribution
of the first-five states, # = 1 to 5. The negative energy
levels refer to the bound state because of the influence
of the potential energy is greater than the kinetic energy.
In the other way, the positive energy levels refer to the
excited (unbound) state of particles, which means when
we increase 7 (principle quantum number) then the

energy level of two-particle system is also increased. So

they are in excited state or unbounded state. The
numerical results show that it is easy to excite the
two-particle system. The number of peaks in Figure 4
refers to the principal quantum number #'%'°,

The accuracy of the calculation depends on
numbers of step size (AZ) or the width of potential well
(1) In this implementation, we choose the width of the
potential well of 5 Bohr radius then the numerical unitless
max step and step size are 2000 and 0.0025, respec-
tively. The results are represented for the energy levels
of the first-five states which are illustrated in F igure 4.

As the results, the finite difference method is
used to implement calculation of the energy levels and

the radial probability distribution of the one dimensional

Figure 6 M. Chomphet , A. Phonchantuek , P. P. Pansila , N. Maneeji-
raprakarn ,S. Sukhasena Journal of Science é Technology MSU.

2019 Jul 1;38(4).
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Schrédinger equation with the Lennard-Jones potential.
This proposed method is highly useful, eficient and easy
to implement.

The fnite difference scheme is wildly used in
several research problems even referred to the differential
equation with the truncation error of 0 (hl)for a centered

three points stencil for a second derivative.
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