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ABSTRACT

This thesis presents the aspect of alternative Hamiltonians, which are in-

equivalent to standard one (summation of kinetic and potential energy), yield-

ing the same Newton’s equation. These alternative Hamiltonians will be termed

as Newton-equivalent Hamiltonian (NEH). In this project a 1-parameter family

Newton-equivalent Hamiltonians, which proposed by A.Degasperis and S.N.M. Rui-

jsenaars in 2001 [1], is studied. This 1-parameter family of NEH constructs from

multiplicative case between variables p and x in 1-dimension. The property of

NEH states that it recover to the standard Hamiltonian as a limit of parameter

c → ∞. Furthermore, in the context of quantum theory, the authors use canon-

ical quantization to promote classical dynamical variables to quantum operators.

Therefore, with appropriate ordering, a 1-parameter family Newton’s equivalent

quantum Hamiltonians (NEQH) is introduced. The parameter of NEQH is ex-

pressed in form of β = 1/2mc. These facts are already checked by Degasperis

and Ruijsenaars in 2001 [1]. For our framework, by using NEQH to Schrödinger’s

equation, we analyzed the energy spectrum and the wavefunction of bound state

with infinite quantum square well. Using continuity condition of wavefunction, we



found that the energy spectrum of system is a function of parameter β. In addi-

tion, we showed, in the limit case of parameter β → 0, that the energy spectrum of

NEQH will recover to standard case. Moreover, we also analyzed energy spectrum

and wavefunction in bound state of finite square well with arbitrary deep well ex-

pressed as constant potential V0. The energy spectrum of finite square well system

is also depend on parameter β for fixed any potential V0. The exact solution of

energy spectrum does not exist, because the equations for solving energy can be

solved by graphical and numerical method. We obtained the energy spectrum for

fixed any potential by using graphical method. Finally, we showed that, as the

limit of V0 → ∞, the energy spectrum of finite square well will tent to infinite

square well case.



CHAPTER I

INTRODUCTION

1.1 Background and motivation

In classical mechanical system motion of a particle, in one dimensional

space, is described by the Newton’s equation . For conservative system, potential

V (q) depend only on position q, the Newton’s equation reads

mq̈(t) = −∂V (q)

∂q
, (1.1)

where q is generalized coordinates, and q̈ is acceleration of a particle. Moreover,

there exist frames of reference (inertial frame) which motion of a particle takes

place. A reference frame on earth is a sufficient approximation to inertial frame.

Integration (1.1) gives dynamics of a particle in time dependence coordinate q(t)

of a mass m under influence V (q). Obviously, the Newton’s equation is a powerful

tool to solve problems of motion. But, many problems in classical mechanics are

easily analyzed by alternative methods. Such a method is contained in Hamilton’s

principle. This principle states that for every motion there is a well-defined function

of coordinates q and velocity q̇ called Lagrangian L, such that the integral

S =

∫ t2

t1

L(q, q̇, t)dt, (1.2)

takes the extremum value. The requirement that S satisfies Hamilton’s principle

gives second order differential equations which is called Euler-Lagrange’s equation

d

dt

∂L

∂q̇
− ∂L

∂q
= 0. (1.3)

For simple conservative system the Lagrangian, in this context is standard La-

grangian, has a simple form

LE(q, q̇) =
1

2
mq̇2 − V (q) = T − V, (1.4)
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where T is the kinetic energy, and V is their potential.

There is another method known as the Hamiltonian formulation. It de-

scribes the motion on a different perspective namely the motion is described in

terms of first-order equations of motion. Moreover, these equations explain the be-

havior of the system in phase space whose coordinates are generalized coordinates q

and canonical momentum p. In general, the canonical momentum is not restricted

to mq̇, but it is introduced by the definition

p =
∂L(q, q̇, t)

∂q̇
. (1.5)

The Hamiltonian H(q, p, t) is generated by the Legendre transformation

H(q, p, t) = q̇p− L(q, q̇, t). (1.6)

Hence, the requirement gives us Hamilton’s canonical equations

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
. (1.7)

Exactly, these two formulations lead the same Newton’s equation (1.1).

But, in 1887 a German Physicist name Hermann von Helmholtz investigated that

the Lagrangian, which yield the same Newton equation, cannot be chosen uniquely

[2, 3, 4]. In other words, we are able to find alternative Lagrangians apart form

the standard one. This problem is known as “ inverse problem of the calculus of

variations ”. According to the Euler-Lagrange’s equation, the inverse problem stud-

ies a sufficient and necessary conditions for existence of an alternative Lagrangian

yielding Newton’s equation [5, 2].

Existence of alternative Lagrangians give rise alternative Hamiltonians,

which not equal to standard one H = p2/2m + V (q), via Legendre transforma-

tion. However, another way to obtain alternative Hamiltonians yielding Newton’s

equation is that write down the Hamiltonian in form of Newton’s equation

∂2H

∂q∂p

∂H

∂p
− ∂2H

∂p2
∂H

∂q
= − 1

m

dV

dq
. (1.8)
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An alternative Hamiltonians, which satisfy this equation (1.8), will be termed as

“Newton’s equivalent Hamiltonian (NEH)”. Obviously, the standard Hamiltonian

HE(q, p) = p2/2m + V (q) is a solution of (1.8). But, solutions of (1.8) are not

restricted to the standard one. This problem is firstly investigated by [6].

The example of NEH, as we show in Chapter II, is a 1-parameter family

Newton equivalent Hamiltonians [1]. The potential of this NEH depend only on

position. For a larger class of equations of motion with the force law depend on

velocity and time, which called q-equivalence Hamiltonian, has been investigated

in [7, 8].

In our framework, the multiplicative Hamiltonian which express in 1-

parameter family yielding Newton’s equation are studied. By using canonical

quantization, with suitable ordering, the authors [1] introduced 1-parameter family

Newton-equivalent Hamiltonians as quantum operator calling Newton-equivalent

quantum Hamiltonians (NEQH). The multiplicative Lagrangian yielding Newton’s

equation was studied in detail by [9]. For the operators of q-equivalent Hamiltonian

was studied by [10]. The 1-parameter family of Newton equivalent Hamiltonians

in one dimensional Cartesian coordinate is expressed as

Hc(x, p) = 4mc2 cosh
( p

2mc

)(
1 +

V (x)

2mc2

) 1
2

− 4mc2, (1.9)

where parameter c ∈ (0,∞). In limit of c → ∞ this Hamiltonians will recover to

standard Hamiltonian

lim
c→∞

Hc(x, p) = HE(x, p). (1.10)

In quantum mechanical system, we used canonical quantization to promote NEH

as a function of quantum operator x̂ and p̂ satisfying the Heisenberg relation

[x̂, p̂] = i~. (1.11)



4

Then the NEH will become to quantum operator NEQH as

Ĥ(β; x̂, p̂) =
1

2β2m
[(1 + iβ

√
2mV (x))1/2exp(−i~β ∂

∂x
)(1 − iβ

√
2mV (x))1/2

+(1 − iβ
√

2mV (x))1/2exp(i~β
∂

∂x
)(1 + iβ

√
2mV (x))1/2] − 1

β2m
,

(1.12)

where parameter β = (2mc)−1 extend class of NEQH. We apply NEQH to Schrödinger’s

equation with infinite square well potential, and analyze discrete energy spectrum

of this system for bound state. Finally we also analyze energy spectrum for finite

square well system.

1.2 Objectives

We studied the 1-parameter family Newton equivalent Hamiltonians which

proposed in paper Newton-equivalent Hamiltonians for the Harmonic Oscillator [1].

According to the paper, the authors presented discrete energy spectrum and wave-

function for Harmonic Oscillator system V (x) = mω2x2/2. Thus, in our framework,

we applied this 1-parameter family Newton’s equivalent Hamiltonians to another

systems i.e. infinite and finite square well potential. The aim of this thesis is to

obtain discrete energy spectrum and wavefunction of both square well systems.

1.3 Frameworks

In chapter 1, we stated the introduction, motivation, objective, and frame-

works of this thesis.

In chapter 2, we reviewed classical mechanical system which include top-

ics of Lagrangian and Hamiltonian formulation, Legendre transformation, inverse

problem, and canonical quantization. Moreover, we also mentioned 1-parameter

family Newton’s equivalent Hamiltonians in this chapter.
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The review of standard Hamiltonian with infinite square well potential is

mentioned in chapter 3. We exhibited the energy spectrum and wavefunction for

this system.

In chapter 4, Energy spectrum and wavefunction of finite square well sys-

tem with standard Hamiltonian are considered.

In chapter 5, we explained perturbation theory for non-degenerate system.

Result and discussion of NEQH of both infinite and finite square well are

represented in chapter 6. We analyzed eigenvalue and eigenfunction of NEQH by

using Schrödinger equation and discussed this energy spectrum in this chapter.



CHAPTER II

1-PARAMETER FAMILY NEWTON’S EQUIVALENT

HAMILTONIANS AND QUANTIZATION

As we have known for a long time. Newton’s second law of motion gives

a way to determine, how the motion of a particle change with arbitrary external

force. The second law can be written as

F⃗ =
dp⃗

dt
= ma⃗, (2.1)

where momentum is defined as p⃗ = mv⃗, and acceleration is a⃗ = dv⃗/dt. Newton’s

second law (2.1) is powerful tool for solving problems in Cartesian coordinates,

But it is difficult to change to different coordinate. To avoid this consideration

new reformulations of classical mechanics, which called Lagrangian mechanics and

Hamiltonian mechanics, are introduced. Such a methods are obtain in Hamilton’s

principle and the results are call Euler-Lagrange’s equation. By using Legendre

transformation, we obtain Hamilton’s equation. The inverse problem mention about

that Lagrangian is not unique. Idea of alternative Lagrangians and alternative

Hamiltonians are arise. In this thesis, the 1-parameter family Newton’s equivalent

Hamiltonians are studied. Moreover, quantization of Hamiltonian are also studied.

2.1 Hamilton’s principle and Euler-Lagrange’s equation

Hamilton’s principle is a formulation of the law of motion. It describes

the motion of mechanical systems for which all forces are derivative of potential as

a function of coordinates, velocities, and time. Hamilton’s principle is considered

more fundamental than Newton’s equation. It can be stated as line integral or

trajectory along configuration space from time t1 to t2 which is called “action” [11]

S(q(t)) =

∫ t2

t1

L(q̇(t), q(t), t)dt, (2.2)
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where L(q̇, q, t) and q(t) are the Lagrangian and generalized coordinates, respec-

tively. The motion of system from time t1 to the position at time t2 in configuration

space is actual path which has stationary value relative to neighboring paths. On

the other hand, actual path is an extremum of action S that is a function q(t) gives

the integral minimum (or maximum) value. This is based on a principle called

Hamilton’s principle or least action principle. In other words, in mathematical

language, the Hamilton’s principle states that the variation of action is zero

δS(q(t)) = δ

∫ t2

t1

L(q̇(t), q(t), t)dt = 0, (2.3)

under the boundary condition, for fixed t1 and t2,

δq(t1) = δq(t2) = 0. (2.4)

We require to find a particular path q(t), for the action S has a stationary value

relative to some set of neighboring paths η(t). A possible set of paths are given by

q(t, α) = q(t, 0) + αη(t), (2.5)

where q(t, 0) is the correct path, and α is infinitesimal parameter. Hence, the action

is

S(α) =

∫ t2

t1

L(q̇(t, α), q(t, α), t)dt. (2.6)

According to variation of action, we obtain

δS =

∫ t2

t1

(
∂L

∂q
δq +

∂L

∂q̇
δq̇

)
dt, (2.7)

where δq denote as ∂q/∂α|α=0 = η(t). Using integration by parts to the second

term of (2.7) gives

∫ t2

t1

(
∂L

∂q̇
δq̇

)
dt =

�������*
0(

∂L

∂q
δq

) ∣∣∣t2
t1
−
∫ t2

t1

(
d

dt

∂L

∂q̇
δq

)
dt. (2.8)

The first term of RHS vanishes at boundary. Thus, the equation (2.7) becomes

δS =

∫ t2

t1

(
∂L

∂q
− d

dt

∂L

∂q̇

)
δqdt. (2.9)
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q(
t, 0

)

t1

t2q(t, 0) + αη(t)
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Figure 1: The variation of a curve between fixed end points

According to Hamilton’s principle condition to obtain stationary point is δS = 0.

Since δq is arbitrary, therefore S has stationary value where the equation

∂L

∂q
− d

dt

∂L

∂q̇
= 0, (2.10)

is valid. We obtain one degree of freedom Euler-Lagrange’s equation (1.3) from

Hamilton’s principle [12, 13]. On the alternative structure of this theory, Hamilto-

nian H = H(q, p, t) connect with Lagrangian L = L(q, q̇, t) via Legendre transfor-

mation.

2.2 Legendre transformation

Legendre transformation in classical mechanics is the procedure for chang-

ing Lagrangian to Hamiltonian corresponding to change the variables from (q, q̇, t)

to (q, p, t). The relationship between canonical momentum p and q̇ is p = ∂L/∂q̇.

Therefore, the Hamiltonian H(q, p, t) is generated by the Legendre transformation



9

as1

H(q, p, t) = q̇p− L(q, q̇, t). (2.11)

Let us consider total differential of Lagrangian L(q, q̇, t),

dL =
∂L

∂q
dq +

∂L

∂q̇
dq̇ +

∂L

∂t
dt. (2.12)

According to Euler-Lagrange’s equation (1.3), by using canonical momentum p =

∂L/∂q̇, This gives

ṗ =
∂L

∂q
. (2.13)

Hence, the total differential of Lagrangian dL(q, q̇, t) becomes

dL = ṗdq + pdq̇ +
∂L

∂t
dt. (2.14)

Let us consider differential of (2.11) and substitute dL(q, q̇, t). We obtain

dH = q̇dp+ pdq̇ − dL(q, q̇, t),

= q̇dp+ pdq̇ − ṗdq − pdq̇ − ∂L

∂t
dt,

= q̇dp− ṗdq − ∂L

∂t
dt. (2.15)

Comparing with total differential of Hamiltonian H(q, p, t)

dH =
∂H

∂q
dq +

∂H

∂p
dp+

∂H

∂t
dt, (2.16)

we obtain the equations

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
,

∂H

∂t
= −∂L

∂t
. (2.17)

Since Hamiltonian is conserved, so the 3rd equation of (2.17) vanish. Therefore,

we get the Hamilton’s equations (1.7) describing the motion in terms of first-order

1Notice that the Hamiltonian (2.11) is only function of (q, p, t). Let us consider derivative of

H with respect to q̇,

dH(q, p, t)

dq̇
= p− dL(q, q̇, t)

dq̇
= 0,

where p = dL(q, q̇, t)/dq̇. So, the Hamiltonian is not function of q̇.
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equation of motion. For simple conservative system, the Hamiltonian is automati-

cally the total energy which express as summation of kinetic energy and potential

energy, HE(q, p) = p2/2m+ V (q).

2.3 The inverse problem

Euler-Lagrange equation or Hamilton equations are lead to Newton equa-

tion where Lagrangian and Hamiltonian are function of L = (1/2)mq̇2 − V (q) and

H = p2/2m + V (q) respectively. But Helmholtz investigated that given equation

of motion the Lagrangian cannot be chosen uniquely. It can be find alternative La-

grangians yielding Newton’s equation which is knowns as “the inverse problem of

the calculus of variations” [5]. The inverse problem identifies sufficient and neces-

sary conditions for existence of alternative Lagrangian to admit a representation in

Euler-Lagrange’s equation. For classical mechanical system with one dimensional

model, the paper [2] investigated that ambiguity in the choice of a Lagrangian

always exist. Moreover, the inverse problem of phase space formulations lead to

existence of an alternative Hamiltonian which connect to alternative Lagrangian

via Legendre transformation.

In the context of alternative Hamiltonian yielding Newton’s equation is

constructed by representing acceleration q̈ as Poisson bracket of {{q,H}, H} with

conservative potential [14]

∂2H(q, p)

∂p∂q

∂H(p, q)

∂p
− ∂2H(p, q)

∂p2
∂H(q, p)

∂q
= − 1

m

dV (q)

dq
. (2.18)

Non-linear differential equation is obtained. Obviously, the standard Hamiltonian

HE = p2/2m + V (q) is a solution of (2.18). But, a solution of eq.(2.18) is not

restricted to HE. There are many solutions of H which satisfy (2.18) to describe the

same classical motions. To study quantum theory Hamiltonian will be quantized

to quantum observable Ĥ. Canonical quantization, which promotes a canonical
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variables (q, p) to quantum observables (q̂, p̂), are studied.

2.4 Canonical quantization

The correspondence principle states that classical mechanics must be a

limiting case of quantum mechanics. The important concepts in classical must

reappear in quantum theory. The fundamental relation in quantum mechanics

is commutation relation of an observable. Let Â and B̂ be observables. The

commutation relation between Â and B̂ is

[Â, B̂] = ÂB̂ − B̂Â. (2.19)

The observable in quantum mechanics associate with measurement of a system. In

general, by effect of uncertainty principle, these two observable are not commute

[Â, B̂] = ÂB̂ − B̂Â ̸= 0. (2.20)

According to correspondence principle, the structure of commutation relation in

quantum mechanics is analog to Poisson bracket in classical mechanics. The

method to promote classical mechanics to quantum one associated with Poisson

bracket is called canonical quantization. The Poisson bracket (P.B.) of any two

dynamical variables u, v is given by

{u, v} =
∂u

∂q

∂v

∂p
− ∂u

∂p

∂v

∂q
, (2.21)

where u and v are function of canonical coordinates and momentum. One of the

properties of P.B. is

{u, v1v2} = {u, v1}v2 + v1{u, v2}. (2.22)

Let us introduce a quantum P.B. which be analog of classical mechanics. Assuming

that dynamical variables are not commute. Evaluation of the P.B. {u1u2, v1v2} in
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two different ways gives

{u1u2, v1v2} = {u1, v1v2}u2 + u1{u2, v1v2},

= {u1, v1}v2u2 + v1{u1, v2}u2 + u1{u2, v1}v2 + u1v1{u2, v2},

(2.23)

and

{u1u2, v1v2} = {u1u2, v1}v2 + v1{u1u2, v2},

= {u1, v1}u2v2 + u1{u2, v1}v2 + v1{u1, v2}u2 + v1u1{u2, v2}.

(2.24)

Equating these two solution, we get

{u1, v1}(u2v2 − v2u2) = (u1v1 − v1u1){u2, v2}. (2.25)

For the condition of quantum P.B. are not commute, and the condition of u1 and

v1 are independently to u2 and v2. We get

u1v1 − v1u1 = i~{u1, v1},

u2v2 − v2u2 = i~{u2, v2}, (2.26)

where ~ neither depend on u1 and v1 nor u2 and v2 and should be a real (hermitian2).

We require the Poisson bracket of any two real variables u1, u2 to be real. In general

value of u1u2 is not real3 and this fact also true for v1v2 [15]. For P.B. of two real

variable to be real, coefficient “i” must appear in (2.26). Hence, we are led to

2Hermitian operator is an operator which gives real eigenvalue

3If Â and B̂ are hermitian, hermitian conjugate of (ÂB̂)† gives eigenvalue not real. Let us

consider

(ÂB̂)† = B̂†Â† = ÂB̂ + [B̂, Â],

in general [B̂, Â] ̸= 0, ÂB̂ is not hermitian.
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following definition of the quantum P.B. (commutation relation) introduced by

operator û and v̂,

[û, v̂] = ûv̂ − v̂û = i~{u, v}. (2.27)

Let us consider the commutation relation involving the canonical momen-

tum and generalized coordinates. For simplicity, we will consider in one dimensional

Cartesian coordinate (q = x). Then (2.27) will become

[x̂, p̂] = x̂p̂− p̂x̂ = i~{x, p} = i~, (2.28)

where the P.B. of {x, p} is 1. According to Schrödinger’s representation, p and x

are promoted to quantum operator namely x̂ = x p̂ = −i~ ∂
∂x

. The commutation

relation (2.28) reads

[x̂, p̂]ψ(x) = x̂p̂ψ(x) − p̂x̂ψ(x),

= x(−i~∂ψ(x)

∂x
) − (−i~∂(xψ(x))

∂x
),

= −i~x∂ψ(x)

∂x
+ i~x

∂ψ(x)

∂x
+ i~ψ(x),

= i~ψ(x), (2.29)

where ψ(x) is arbitrary function of x. Therefore, analog from classical theory

to quantum one, we promote classical dynamical variables to quantum operators

which satisfies the equation (2.28).

In the present day, we know that constructions of quantum systems with-

out the classical analog are very difficult. Let us consider Dirac’s statement [15, 16]

“classical mechanics must be limiting case of quantum mechanics.” However, many

papers exhibit that an alternative Hamiltonians give rise the canonically inequiva-

lent structure of Poisson bracket. For this situation, noncanonical quantization are

introduced for example in [17, 18].

One idea of noncanonical quantization was proposed by Wigner on the

paper “Do the equation of motion determine the quantum mechanical commuta-
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tion relations? [19]”. Wigner notice that in suitable limit, which the alternative

structure in quantum mechanics provide alternative structure available in classical

mechanics? In other words, to describe in quantum framework, is it possible to

show analog of alternative Hamiltonian? Wigner followed this idea and showed in

[19] that compatibility with equation of motion, the quantum commutation relation

are not unique. Wigner identified H as the time evolution generator together with

Newton’s equation for harmonic oscillator. He analyzed the problem of quantum

harmonic oscillator by set up the relation calling Wigner’s quantization

v̂ =
i

~
[Ĥ, x̂], −ω2x̂ =

i

~
[Ĥ, v̂], [x̂, v̂] =

i~
m
F (Ĥ), (2.30)

where F (Ĥ) is arbitrary function.

There are many papers to study system of inequivalent classical Hamil-

tonian by using noncanonical quantization. For example, the paper [20] studied

about noncanonical one-dimensional harmonic oscillator. Paper [21] considered the

quantization of Newton-equivalent Hamiltonians yielding the Newton’s equation.

From [22] studied about some of the algebraic structure that are compatible with

the quantization of harmonic oscillator through its Newton equation. Inequiva-

lent Hamiltonians exist for damped harmonic oscillator which make quantization

of system ambiguous [23].

2.5 1-parameter family Newton’s equivalent Hamiltonian

Let us consider the question: what are the other solutions of Hamiltonian

yielding Newton’s equation (1.1) with arbitrary force? To answer this question, let

us consider Poisson bracket of velocity ẋ in Cartesian coordinate [20],

{ẋ, H} = ẍ = − 1

m

∂V (x)

∂x
, (2.31)

∂ẋ

∂x

∂H

∂p
− ∂ẋ

∂p

∂H

∂x
= − 1

m

∂V (x)

∂x
. (2.32)
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By using Hamilton’s equation (1.7) the equation (2.32) reads

∂2H

∂x∂p

∂H

∂p
− ∂2H

∂p2
∂H

∂x
+

1

m

∂V (x)

∂x
= 0. (2.33)

We obtain the non-linear differential equation. The standard Hamiltonian

is a solution of (2.33) but a solution of (2.33) is not restricted to standard one.

Let us consider another solution of equation (2.33) by using separation method in

two cases i.e. additive case and multiplicative case, where x and p are independent

variables.

In the first case, the Hamiltonian is additive:

H(x, p) = F (p) +G(x), (2.34)

substituting (2.34) into (2.33) gives

− F ′′(p)G′(x) +
1

m
V ′(x) = 0. (2.35)

The function p and x are independent. So, the equation (2.35) is valid for

F ′′(p) =
1

m

V ′(x)

G′(x)
= 2A, (2.36)

then

F ′′(p) = 2A,

F ′(p) = 2Ap+B,

F (p) = Ap2 +Bp+ C, (2.37)

where A is arbitrary constant. We get F (p) in the form of Ap2 + Bp + C with

arbitrary constant B and C. Therefore, G(x) can be solved as follows

2AG′(x) =
1

m
V ′(x),∫

G′(x)dx =

∫
1

2mA
V ′(x)dx,

G(x) =
1

2mA
V (x) +D. (2.38)
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So, the solution (2.34) becomes

H(x, p) = Ap2 +Bp+ C +
V (x)

2mA
+D. (2.39)

The solution (2.39) leads to the standard Hamiltonian HE(x, p) (1.7), for we choose

the choice A, B,C, and D as A = 1/2m,B = C = D = 0. This gives

H(x, p) =
p2

2m
+ V (x).

In the second case, let us consider the multiplicative case

H(x.p) = F (p)G(x). (2.40)

Substituting (2.40) into (2.33) reads

∂2(F (p)G(x))

∂x∂p

∂(F (p)G(x))

∂p
− ∂2(F (p)G(x))

∂p2
∂(F (p)G(x))

∂x
+

1

m

∂V (x)

∂x
= 0,(

∂G(x)F ′(p)

∂x

)
(G(x)F ′(p)) −G(x)F ′′(p)F (p)G′(x) +

1

m
V ′(x) = 0,

G′(x)F ′(p)2G(x) −G(x)F (p)F ′′(p)G′(x) +
1

m
V ′(x) = 0.

Then (2.33) becomes

(
F ′(p)2 − F ′′(p)F (p)

)
G′(x)G(x) +

1

m
V ′(x) = 0. (2.41)

This equation (2.41) is valid for term of nonlinear second order differential equation

defined as F ′(p)2 − F ′′(p)F (p) = −A where A is constant. The solution of F (p)

can be solved as follows

F ′(p)2 − F ′′(p)F (p) = −A,

F ′(p)2 − F (p)
dF ′(p)

dF
F ′(p) = −A,

F ′(p)

(
F ′(p) − F (p)

dF ′(p)

dF

)
= −A,

F ′(p) − F (p)
dF ′(p)

dF
=

−A
F ′(p)

,(
F ′(p) − F (p)

dF ′(p)

dF

)(
1

F (p)2

)
=

(
−A
F ′(p)

)(
1

F (p)2

)
,
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d

dF

(
F ′(p)

F (p)

)
=

A

F ′(p)/F (p)

1

F (p)3
,∫ (

F ′(p)

F (p)

)
d

(
F ′(p)

F (p)

)
=

∫
AF (p)−3dF,(

F ′(p)

F (p)

)2

= −AF (p)−2 + C2,

F ′(p)2 = −A+ C2F (p)2,

F ′(p) = ±
√
C2F (p)2 − A,

setting A = B2

F ′(p) = ±
√
C2F (p)2 −B2,∫

dF (p)√
C2F (p)2 −B2

= ±
∫
dp,

±p =
1

B

∫
dF (p)√

C2F (p)2

B2 − 1
,

=
1

B

B

C

∫
d(CF (p)

B
)√

(CF (p)
B

)2 − 1
,

=
1

C

∫
d(CF (p)

B
)√

(CF (p)
B

)2 − 1
,

setting CF (p)
B

= coshθ

±p =
1

C

∫
d(coshθ)√
cosh2θ − 1

,

by using sinh2θ = cosh2θ − 1,

±Cp =

∫
sinhθdθ

sinhθ
,

±Cp = θ −D,

θ = ±Cp+D,

cosh−1

(
CF (p)

B

)
= ±Cp+D,

CF (p)

B
= cosh (±Cp+D) ,

using property of even function cosh(±θ) = cosh(θ),

F (p) =
B

C
cosh(Cp+D).
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We define B
C

= c1, C = c2, D = c3, so the solution gives

F (p) = c1cosh(c2p+ c3), (2.42)

where A = B2 = c21c
2
2. On the same way the negative of A, we get

F ′(p) = ±
√
C2F (p)2 − A,

setting −A = B2,

F ′(p) = ±
√
C2F (p)2 +B2,∫

dF (p)√
C2F (p)2 +B2

= ±
∫
dp,

±p =
1

B

∫
dF (p)√

C2F (p)2

B2 + 1
,

=
1

B

B

C

∫
d(CF (p)

B
)√

(CF (p)
B

)2 + 1
,

=
1

C

∫
d(CF (p)

B
)√

(CF (p)
B

)2 + 1
,

setting CF (p)
B

= sinhθ,

±p =
1

C

∫
d(sinhθ)√
sinh2θ + 1

,

By using cosh2θ = sinh2θ + 1,

±Cp =

∫
coshθdθ

coshθ
,

±Cp = θ −D,

θ = ±Cp+D,

sinh−1

(
CF (p)

B

)
= ±Cp+D,

CF (p)

B
= sinh (±Cp+D) ,

using property of odd function sinh(±θ) = ±sinh(θ),

F (p) = ±B
C

sinh(Cp+D).
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We define ±B
C

= c1, C = c2, D = c3, so the solution gives

F (p) = c1sinh(c2p+ c3), (2.43)

where A = −B2 = −(±c1c2)2 = −c21c22. In either case, we deduce

−AG(x)G′(x) +
1

m
V ′(x) = 0,

G′(x)G(x) =
1

mA
V ′(x),∫

G(x)dG(x) =
1

mA

∫
dV (x),

G2(x)

2
=

V (x)

mA
+ c4,

G2(x) =
2V (x)

mA
+ 2c4,

G(x) =

(
2V (x)

mA
+ 2c4

)1/2

. (2.44)

Assuming V (x) is bounded below, we can select A positive, and choose c4 that the

RHS (2.44) is positive. The analysis shows that the Hamiltonian express in form

of

H(x, p) = F (p)G(x),

= c1cosh(c2p+ c3)

(
2V (x)

mA
+ 2c4

)
,

= c1cosh(c2p+ c3)

(
2V (x)

mc21c
2
2

+ 2c4

)
. (2.45)

To construct (2.45) to 1-parameter family Hamiltonian, we choose c1 = 4mc2, c2 =

1/2mc2, c3 = 0, c4 = 1/2. Hence the solution, which proposed for the first time by

[1], is expressed as

Hc(x, p) = 4mc2 cosh
( p

2mc

)(
1 +

V (x)

2mc2

) 1
2

, c ∈ (0,∞). (2.46)

Notice that one of the Hamiltonians (fixed any c) needs to require

V (x) > −2mc2, (2.47)
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for the Hamiltonians (2.46) to be real. For convenience to study later, we will

redefine equation (2.46) by subtracting 4mc2

Hc(x, p) = 4mc2 cosh
( p

2mc

)(
1 +

V (x)

2mc2

) 1
2

− 4mc2. (2.48)

This alternative Hamiltonians give the Newton’s equation. We can checked

directly via (1.7)

ẋ =
∂H

∂p
, ṗ = −∂H

∂x
,

ẋ =
∂

∂p

[
4mc2 cosh

( p

2mc

)(
1 +

V (x)

2mc2

) 1
2

− 4mc2

]
,

= 2c sinh
( p

2mc

)(
1 +

V (x)

2mc2

) 1
2

, (2.49)

ṗ = − ∂

∂x

[
4mc2 cosh

( p

2mc

)(
1 +

V (x)

2mc2

) 1
2

− 4mc2

]
,

= −dV (x)

dx
cosh

( p

2mc

)(
1 +

V (x)

2mc2

)− 1
2

. (2.50)

Taking time derivative to (2.49) and using ẋ, ṗ, we obtain

ẍ =
ṗ

m

(
1 +

V (x)

2mc2

)1/2

cosh
( p

2mc

)
+ sinh

( p

2mc

)(
1 +

V (x)

2mc2

)−1/2(
1

2mc

dV (x)

dx
ẋ

)
,

= − 1

m

dV (x)

dx
cosh

( p

2mc

)(
1 +

V (x)

2mc2

)−1/2(
1 +

V (x)

2mc2

)1/2

cosh
( p

2mc

)
+sinh

( p

2mc

)(
1 +

V (x)

2mc2

)−1/2
(

1

2mc

dV (x)

dx
2c sinh

( p

2mc

)(
1 +

V (x)

2mc2

)1/2
)
,

= − 1

m

dV (x)

dx
cosh2

( p

2mc

)
+

1

m

dV (x)

dx
sinh2

( p

2mc

)
,

= − 1

m

dV (x)

dx

[
cosh2

( p

2mc

)
− sinh2

( p

2mc

)]
. (2.51)

By using identity cosh2(p/2mc)− sinh2(p/2mc) = 1, we get the Newton’s equation

mẍ = −dV (x)

dx
.

We are able to conclude that the equation (2.48) is Newton-Equivalent Hamiltoni-

ans.
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Moreover, the 1-parameter Newton’s equivalent Hamiltonians (2.48) con-

sist standard Hamiltonian HE = p2/(2m) + V (x) as a limit case c→ ∞. By using

Taylor expansion to cosh(x) = 1 + x2

2!
+ x4

4!
+ ... and (1 +x)n = 1 +nx+ n(n−1)x2

2!
+ ...

to 1-parameter family (2.48), we have

Hc(x, p) = 4mc2 cosh
( p

2mc

)(
1 +

V (x)

2mc2

) 1
2

− 4mc2,

= 4mc2
(

1 +
p2

22m2c22!
+

p4

24m4c44!
+ · · ·

)
×(

1 +
V (x)

4mc2
− V 2(x)

16m2c42!
+ · · ·

)
− 4mc2,

= 4mc2 + V (x) +
p2

2m
− V 2(x)

8mc2
+
p2V (x)

8m2c2
− p2V 2(x)

32m3c4

+
p4

96m3c2
+

p4V (x)

384m4c4
− p4V 2(x)

3072m5c6
+ · · · − 4mc2,

=
p2

2m
+ V (x) − V 2(x)

8mc2
+
p2V (x)

8m2c2
− p2V 2(x)

32m3c4
+

p4

96m3c2

+
p4V (x)

384m4c4
− p4V 2(x)

3072m5c6
+ · · · ,

lim
c→∞

[Hc(x, p)] =
p2

2m
+ V (x) = HE(x, p). (2.52)

Now let us consider the quantum case of 1-parameter family Newton’s

equivalent Hamiltonian. By using the canonical quantization in one dimension, the

dynamical variables are replaced by p → p̂ = i~(∂/∂x) and x → x̂ = x to (2.48).

The Hamiltonian (2.48) will become to quantum operator as

Ĥ(β; x̂, p̂) =
1

β2m
cosh(βp̂)(1 + 2mβ2V (x̂))1/2 − 1

β2m
. (2.53)

There are in fact many choices corresponding to alternative ordering. For example,

the choice given by [1, 24] which insist in form self-adjoint and parity invariant

Ĥ(β; x̂, p̂) =
1

2β2m

[
(1 + iβ

√
2mV (x̂))1/2exp(−βp̂)(1 − iβ

√
2mV (x̂))1/2

+(1 − iβ
√

2mV (x̂))1/2exp(βp̂)(1 + iβ
√

2mV (x̂))1/2
]
− 1

β2m
.

(2.54)
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Substitution operator x̂, p̂ in Schrödinger picture the equation (2.54) reads

Ĥ(β; x̂, p̂) =
1

2β2m

[
(1 + iβ

√
2mV (x))1/2exp(−i~β ∂

∂x
)(1 − iβ

√
2mV (x))1/2

+(1 − iβ
√

2mV (x))1/2exp(i~β
∂

∂x
)(1 + iβ

√
2mV (x))1/2

]
− 1

β2m
,

(2.55)

where β = (2mc)−1. The importance property of observable is Hermitian. Because

the eigenvalue of an Hermitian operator correspond to a real physical quantity.

Hence,we need to construct operator to hermitian. One idea to obtain hermitian

operator is that present an operator in form adjoint operator. Let us consider inner

product of operator Â and adjoint of Â†,

⟨Â†ψl|ψn⟩ = ⟨ψl|Âψn⟩. (2.56)

Condition for hermitian operator [25] is

⟨Âψl|ψn⟩ = ⟨ψl|Âψn⟩. (2.57)

The adjoint operator will become to hermitian operator, if equation

Â† = Â, (2.58)

is true. A linear operator may equal its adjoint, and is then called self-adjoint

operator. According to (2.55) the adjoint of NEQH is

Ĥ†(β; x̂, p̂) =
1

2β2m

[
(1 + iβ

√
2mV (x̂))1/2exp(−βp̂)(1 − iβ

√
2mV (x̂))1/2

+(1 − iβ
√

2mV (x̂))1/2exp(βp̂)(1 + iβ
√

2mV (x̂))1/2
]†

− 1

β2m
.

(2.59)

By using Properties of adjoint operator

(ÂB̂)† = B̂†Â†,

(Â+ B̂)† = Â† + B̂†,
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the equation (2.59) becomes

Ĥ†(β; x̂, p̂) =
1

2β2m

[
(1 + iβ

√
2mV (x̂†))1/2exp(−βp̂†)(1 − iβ

√
2mV (x̂†))1/2

+(1 − iβ

√
2mV (x̂†))1/2exp(βp̂†)(1 + iβ

√
2mV (x̂†))1/2

]
− 1

β2m
.

(2.60)

The operator x̂ and p̂ are hermitian operator.4 Hence, the equation (2.60) becomes

Ĥ†(β; x̂, p̂) =
1

2β2m

[
(1 + iβ

√
2mV (x̂))1/2exp(−i~β ∂

∂x
)(1 − iβ

√
2mV (x̂))1/2

+(1 − iβ
√

2mV (x̂))1/2exp(i~β
∂

∂x
)(1 + iβ

√
2mV (x̂))1/2

]
− 1

β2m

= H(β; x̂, p̂).

Clearly this NEQH operator is Hermitian operator.

4let us consider the hermitian conjugate of x̂ and p̂

x̂† = x̂

p̂† =

(
−i~

d

dx

)†

= i~
(

d

dx

)†

= i~
(
− d

dx

)
= p̂

where hermitian of d/dx is −d/dx



CHAPTER III

QUANTUM INFINITE SQUARE WELL

The infinite square well potential restricts the motion of a particle between

high (infinity) walls of width L. To find energy spectrum and wavefunction, let us

consider the potential energy [26]

V (x) =


0, if 0 ≤ x ≤ L

∞, otherwise.

(3.1)

This potential is illustrated in Figure 2.

V (x) = ∞

IIII II

V (x) = ∞

0 L
x

Figure 2: 1-dimension infinite square well system

Potential outside well is infinity V (x) = ∞. The probability of finding a particle

outside the well is zero. Moreover wavefunction in this region, which must be

continuous, vanish at the boundary namely ψ(x) = 0. Inside the well, the potential

is zero V (x) = 0. Hence, a particle moving inside the well must be represented as

a free particle. The time-independent Schrödinger’s equation reads

Ĥψ = ESψ, (3.2)

− ~2

2m

d2ψ

dx2
+ V (x)ψ = ESψ, (3.3)



25

or

d2ψ

dx2
= −k2ψ, where k ≡

√
2mES

~
, (3.4)

where ES is an energy which is generated by standard Hamiltonian. Let us consider

the condition, where energy of a particle is positive ES ≥ 0. (ES < 0 does not

work because it has only trivial solution5). General solution of (3.4) can be solved

as

d2ψ(x)

dx2
+ k2ψ(x) = 0.

By using characteristic equation,

p2 + k2 = 0,

p2 = −k2,

p =
√
−k2,

p = ±ik,

the general solution of (3.4) reads

ψ(x) = c1e
ikx + c2e

−ikx. (3.5)

By using the Euler relation exp(±ix) = cos(x) ± isin(x), we obtain

ψ(x) = c1(cos(kx) + isin(kx)) + c2(cos(kx) − isin(kx)),

= (ic1 − ic2)sinkx+ (c1 + c2)coskx,

= Asinkx+Bcoskx, (3.6)

where A and B are arbitrary constants.

Wavefunction represents a particle in the well, so the wavefunction must

be continuous at the boundaries x = 0 and x = L. Wavefunction ψ(x) must be

ψ(0) = ψ(L) = 0, (3.7)

5There is no physically acceptable solution in this case
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ψ(0) = Asin0 +Bcos0 = B = 0, (3.8)

and

ψ(L) = AsinkL = 0, (3.9)

where A is arbitrary constant and A ̸= 0. The equation (3.9) is valid for sinkL = 0.

This gives

kn =
nπ

L
, with n = 1, 2, 3, . . . (3.10)

Hence the nontrivial solution of Schrödinger equation with boundary conditions is

given by

ψn(x) = Asin
(nπx
L

)
. (3.11)

To guarantee that the particle are exactly found inside the well. Wavefunction

satisfies ∫ L

0

ψ∗(x)ψ(x)dx = 1. (3.12)

The equation can be computed∫ L

0

ψ∗(x)ψ(x)dx =

∫ L

0

A2sin2
(nπx
L

)
dx,

=
A2

2

∫ L

0

(1 − cos

(
2nπx

L

)
)dx,

=
A2

2

[
x
∣∣∣L
0
− L

2nπ
sin

(
2nπx

L

) ∣∣∣L
0

]
,

=
A2

2

[
L− L

2nπ
sin (2nπ)

]
,

=
A2L

2
= 1.

Therefore the arbitrary constant, which correspond to normalization condition,

becomes

A =

√
2

L
. (3.13)

So, the normalized wavefunctions are expressed in the form

ψn(x) =

√
2

L
sin
(nπx
L

)
. (3.14)
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The energy is obtained by substituting (3.14) to the Schorödinger equation. This

gives

Ĥψ(x) = − ~2

2m

√
2

L

d2

dx2
sin
(nπx
L

)
,

= − ~2

2m

√
2

L

L

nπ

d

dx
cos
(nπx
L

)
,

=
~2

2m

√
2

L

(nπ
L

)2
sin
(nπx
L

)
,

=
n2π2~2

2mL2

√
2

L
sin
(nπx
L

)
,

=
n2π2~2

2mL2
ψ(x).

Hence, the energy spectrum of this system are expressed as

ES
n =

n2π2~2

2mL2
=
n2π2~2

8ma2
, where a = L/2 (3.15)

The illustration of wavefunction and energy of Infinite square well are given in

Figure 3

V (x) = ∞V (x) = ∞

0 L

ES
1 = π2~2

2mL2ψ1(x)

ES
2 = 4π2~2

2mL2ψ2(x)

ES
3 = 9π2~2

2mL2ψ3(x)

ES
4 = 16π2~2

2mL2ψ4(x)

x

Figure 3: Energy and wavefunction of infinite square well



CHAPTER IV

QUANTUM FINITE SQUARE WELL

In this chapter, we mention the time-independent Schrödinger’s equation

in rectangular well potential system by following the text book [27]. The potential

is expressed as

V (x) =


0, if 0 < x < L

V0, if x < 0, x > L.

(4.1)

The potential is illustrated in Figure 4,

0 L

V0

L/2

aa

x

V (x)

Figure 4: 1-dimension finite square well system

where V0 and L are depth and width of the well, respectively. If the energy of

a particle is greater than potential E > V0, the particle correspond to scattering

problem which energy have a continuous spectrum. The case of energy less than

potential 0 < E < V0
6, the energy spectrum will be discrete corresponding to a

particle in bound state. The bound state of a particle is studied in our framework.

6The energy cannot less than the minimum value of the potential i.e. E < 0 because there is

no physically acceptable solution of Schrödinger’s equation.
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The potential inside the well equals to zero V0 = 0, then the time-independent

Schrödinger’s equation reads

− ~2

2m

d2ψII(x)

dx2
= EψII(x),

~2

2m

d2ψII(x)

dx2
= −EψII(x),

d2ψII(x)

dx2
+

2mE

~2
ψII(x) = 0,

d2ψII(x)

dx2
+ k2ψII(x) = 0, k =

[
2mE

~2

]1/2
. (4.2)

By using the characteristic equation, the Schrödinger’s equation becomes

p2 + k2 = 0,

p = ±ik. (4.3)

Let us consider ansatz ψ(x) = exp(px), so the general solution of (4.2) reads

ψII(x) = c1e
ikx + c2e

−ikx, (4.4)

where exp(iαx) and exp(−iαx) are linearly independent. Using Euler’s identity,

e±iθ = cos(θ) ± isin(θ), (4.5)

the equation (4.4) gives

ψII(x) = c1cos(kx) + c1isin(kx) + c2cos(kx) − c2icos(kx),

= (c1 + c2) cos(kx) + (c1i− c2i)sin(kx),

= Acos(kx) +Bsin(kx), 0 < x < L (4.6)

where the constant A = c1 + c2 and B = c1i− c2i.

In region outside the well the time-independent Schrödinger’s equation can
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be written as

− ~2

2m

d2ψ(x)

dx2
+ V0ψ(x) = Eψ(x),

− ~2

2m

d2ψ(x)

dx2
+ (V0 − E)ψ(x) = 0,

d2ψ(x)

dx2
− 2m

~2
(V0 − E)ψ(x) = 0,

d2ψ(x)

dx2
− κ2ψ(x) = 0, κ =

[
2m

~2
(V0 − E)

]1/2
. (4.7)

Using the characteristic equation, the Schrödinger’s equation gives

p2 − κ2 = 0,

p = ±κ. (4.8)

Let us consider ansatz ψ(x) = exp(px), so the general solution reads

ψ(x) = Ceκx +De−κx. (4.9)

We use the fact that wavefunction must be finite for all x, therefore as x → ±∞

the wavefunction must be convergence. Let us consider the region III x > L, the

first term of RHS of equation (4.9) will be divergence as x → ∞. Therefore we

must set the constant C = 0, hence the solution (4.9) becomes

ψIII(x) = De−κx, x > L. (4.10)

In the same way as region III, the general solution in region I x < 0 is expressed as

ψI(x) = Feκx +Ge−κx. (4.11)

Due to the fact that wavefunction as x → −∞ must be finite, the second term of

equation (4.11) will blows up. Therefore, to set constant G = 0, the solution of

(4.11) reads

ψI(x) = Feκx, x < 0. (4.12)

Notice that k and κ obey the constraint

k2 + κ2 =
2mE

~2
+

2m(V0 − E)

~2
=

2mV0
~2

. (4.13)
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Requirements of the boundary condition are that ψ and dψ/dx must be continuous

at x = 0 and x = L. At boundary x = 0, the conditions are ψI|x=0 = ψII|x=0

ψI|x=0 = ψII|x=0,

Fe0 = Acos(0) +Bsin(0),

F = A, (4.14)

and dψI/dx|x=0 = dψII/dx|x=0,

dψI

dx
|x=0 =

dψII

dx
|x=0,

κAe0 = −Aksin(0) +Bkcos(0),

κ

k
A = B. (4.15)

The other boundary conditions at x = L are ψII|x=L = ψIII|x=L and dψII/dx|x=L =

dψIII/dx|x=L. First condition gives

ψII|x=L = ψIII|x=L,

Acos(kL) +Bsin(kL) = De−κL. (4.16)

The second condition gives

dψII

dx
|x=L =

dψIII

dx
|x=L,

−Aksin(kL) +Bkcos(kL) = −κDe−κL. (4.17)

Substituting (4.16) into (4.17) gives

−Aksin(kL) + Bkcos(kL) = −κAcos(kL) − κBsin(kL). (4.18)

Substituting equation (4.14) and (4.15) into equation (4.18) gives

−Aksin(kL) +
κ

k
Ak cos(kL) = −κAcos(kL) − κ

κ

k
Asin(kL),

−ksin(kL) + κ cos(kL) = −κcos(kL) − κ2

k
sin(kL),

−k2sin(kL) + kκ cos(kL) = −kκcos(kL) − κ2sin(kL),(
k2 − κ2

)
sin(kL) − 2kκ cos(kL) = 0. (4.19)
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The equation (4.19) is imaginary part of equation (κ+ ik)2eikL. The proof of this

relation expressed as

(
k2 − κ2

)
sin(kL) − 2kκ cos(kL) = 0,

Im[(κ2 − k2)cos(kL) − 2kκsin(kL)+

i
(
(κ2 − k2)sin(kL) + 2kκcos(kL)

)
] = 0,

Im(κ2 + 2ikκ− k2)(cos(kL) + isin(kL)) = 0,

Im(κ+ ik)2eikL = 0. (4.20)

Hence, let us consider the equation (4.20)

Im
(
κeikL/2 + ikeikL/2

)2
= 0,

Im

(
κcos(

kL

2
) + iκsin(

kL

2
) + ikcos(

kL

2
) − ksin(

kL

2
)

)2

= 0,

Im

(
κcos(

kL

2
) − ksin(

kL

2
) + i

(
κsin(

kL

2
) + kcos(

kL

2
)

))2

= 0.

Recalling (x+ iy)2 = x2 + 2ixy − y2 = 0 the imaginary part of (4.20) becomes

2

(
κsin(

kL

2
) + kcos(

kL

2
)

)(
κcos(

kL

2
) − ksin(

kL

2
)

)
= 0,(

κ+ kcot(
kL

2
)

)(
κcot(

kL

2
) − k

)
= 0. (4.21)

Two solution are obtained as follows

κ = −kcot(
kL

2
) = −kcot(ka), (4.22)

and

κ = ktan(
kL

2
) = ktan(ka), (4.23)

where L/2 = a is a half width of the well7. The equation (4.22), (4.23), and con-

strain (4.13) can be solved graphically. First, let us define dimensionless quantities

7All of these calculation will become easy, if we consider this system by using symmetry of

square well
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x = ka and y = κa . So, the equations (4.22), (4.23) and (4.13) become

y = −xcot(x), (4.24)

y = xtan(x), (4.25)

x2 + y2 = ρ2, (4.26)

where ρ = (mV0L
2/2~2)1/2 is the dimensionless quantity to measure potential V0.

The plot of functions between y = xtan(x) and x2 + y2 = ρ2 is expressed in Figure

5

ρ = 1

ρ = 3

ρ = 6

x

y

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Figure 5: Intersection points between y = xtan(x) and x2 + y2 = ρ2

Other plot between equation y = −xcot(x) and x2 + y2 = ρ2 is showed in

Figure 6
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ρ = 1

ρ = 3

ρ = 6

x

y

0 1 2 3 4 5 6
0

1

2

3

4

5

6

Figure 6: Intersection points between y = −xcot(x) and x2 + y2 = ρ2

The energy level can be found by considering the intersection point between

circle x2+y2 = ρ2 and curves y = xtan(x) or y = −xcot(x). The intersection points

are depend on the parameter ρ which called “ strength parameter ” of potential [28].

For a fixed values of mass m and fixed value of width a, the strength parameter

ρ depends only on potential. For example if the strength parameter ρ increase

( in other words, potential increase ), the intersection points corresponding to

solution appear successively (see Figure 5,6). We see from both figures 5,6 that

ρ = 1, there is only one bound state, ρ = 3, there are two bound states, and

ρ = 6, there are four bound states. The energy for each level can be obtained

from equation En = k2n~2/2m, where kn = xn/a relate to intersection point. For

example, ρ = 6 give four bound state corresponding to intersection points as follows

x1 = 1.34475, x2 = 2.67878, x3 = 3.98583, x4 = 5.22596. Thus the energy level,

which expressed in dimensionless form, are showed in table 1.

Finally, let us consider the limiting case of finite square well namely V0 →

∞ (or ρ → ∞). According to Figures 5, 6, the circle has radius ρ → ∞. So the

intersection points appear at infinity, and give infinite number of energy levels. It is
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Table 1: Energy level of finite square well for ρ = 6

n intersection point dimensionless energy

(xn) (2mEa2/~2 = x2n)

1 1.34475 1.80835

2 2.67878 7.17586

3 3.98583 15.88684

4 5.22596 27.31066

apparent that the roots (xn) will be given by xn = kna = nπ/2 where n = 1, 2, 3, ...

is integer. Hence the energy spectrum become

xn = kna,

= (
2mEn

~2
)1/2a.

Therefore, the intersection points satisfy xn = nπ/2. This gives

(
2mEn

~2
)1/2a =

nπ

2
,

En =
n2π2~2

8ma2
. n = 1, 2, 3, ...

The energy spectrum recover to infinite square well case.



CHAPTER V

NON-DEGENERATE PERTURBATION THEORY

5.1 General Formulation

The previous chapter, we have solved (standard) time-independent Schrödinger’s

equation for finite and infinite square well potentials:

H0ψ0
n = E0

nψ
0
n, (5.1)

where H0, ψ0
n and E0

n are denoted as “unperturbed” Hamiltonian, wavefunction

and energy respectively. Here a complete set of orthonormal eigenfunctions ψ0
n are

given by

⟨ψ0
n|ψ0

m⟩ = δnm. (5.2)

Perturbation theory is a procedure for solving approximation of solution with

known exact solutions of the unperturbed case. We would like to solve the new

eigenfunctions and eigenvalues:

Hψn = Enψn. (5.3)

We write the new Hamiltonian as

H = H0 + lH ′ (5.4)

where H ′ is the perturbation Hamiltonian. The parameter l has been introduced for

convenience, and it will allow us to identify the different orders of the perturbative

calculation. And later we will set parameter to 1. Writing ψn and En as power

series in l, we obtain

ψn = ψ0
n + lψ1

n + l2ψ2
n + · · · , (5.5)

En = E0
n + lE1

n + l2E2
n + · · · , (5.6)
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where E1
n, E2

n are the first-order and second-order corrections to eigenvalues respec-

tively, and ψ1
n, ψ2

n are the first-order and second-order corrections of eigenfunction

respectively. Substituting equations (5.4), (5.5) and (5.6) into equation (5.3), we

obtain

(H0 + lH ′)(ψ0
n + lψ1

n + l2ψ2
n + · · · ) = (E0

n + lE1
n + l2E2

n + · · · )(ψ0
n + lψ1

n + l2ψ2
n + · · · ).

(5.7)

Collecting the powers of l, this gives

H0ψ0
n + l(H0ψ1

n +H ′ψ0
n) + l2(H0ψ2

n +H ′ψ1
n) + · · ·

= E0
nψ

0
n + l(E0

nψ
1
n + E1

nψ
0
n) + l2(E0

nψ
2
n + E1

nψ
1
n + E2

nψ
0
n) + · · · . (5.8)

The lowest order of parameter (l0) gives the unperturbed case H0ψ0
n = E0

nψ
0
n. The

first order (l1) gives

H0ψ1
n +H ′ψ0

n = E0
nψ

1
n + E1

nψ
0
n. (5.9)

The second order (l2) gives

H0ψ2
n +H ′ψ1

n = E0
nψ

2
n + E1

nψ
1
n + E2

nψ
0
n. (5.10)

5.2 First-Order Contribution

According to first order contribution, equation (5.9), taking the inner prod-

uct to (5.9) with ψ0
n gives

⟨ψ0
n|H0|ψ1

n⟩ + ⟨ψ0
n|H ′|ψ0

n⟩ = E0
n⟨ψ0

n|ψ1
n⟩ + E1

n⟨ψ0
n|ψ0

n⟩. (5.11)

Using properties of orthonormal eigenfunction ⟨ψ0
n|ψ0

n⟩ = 1, and Hermitian operator

of unperturbed Hamiltonian H0, the equation (5.11) becomes

⟨H0ψ0
n|ψ1

n⟩ + ⟨ψ0
n|H ′|ψ0

n⟩ = E0
n⟨ψ0

n|ψ1
n⟩ + E1

n�����:1
⟨ψ0

n|ψ0
n⟩, (5.12)

������
E0

n⟨ψ0
n|ψ1

n⟩ + ⟨ψ0
n|H ′|ψ0

n⟩ = ������
E0

n⟨ψ0
n|ψ1

n⟩ + E1
n. (5.13)
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Hence, the first-order correction to the energy is expressed as

E1
n = ⟨ψ0

n|H ′|ψ0
n⟩. (5.14)

The energy of first-order correction is expectation value of perturbation Hamilto-

nian in unperturbed state.

The first-order correction to the wavefunction can be found by rewriting

(5.9) as

(H0 − E0
n)ψ1

n = −(H ′ − E1
n)ψ0

n. (5.15)

We know that the unperturbed wavefunctions constitute a complete set, so the

first order wavefunction ψ1
n can be expressed as linear combination of unperturbed

wavefunctions;

ψ1
n =

∑
m̸=n

c1nmψ
0
m. (5.16)

To find the coefficient c1nm, substituting equation (5.16) into (5.15) we have∑
m̸=n

(H0 − E0
n)c1nmψ

0
m = −(H ′ − E1

n)ψ0
n, (5.17)∑

m̸=n

(E0
m − E0

n)c1nmψ
0
m = −(H ′ − E1

n)ψ0
n. (5.18)

Taking inner product with ψ0
l , we obtain∑

m̸=n

(E0
m − E0

n)c1nm⟨ψ0
l |ψ0

m⟩ = −⟨ψ0
l |(H ′ − E1

n)|ψ0
n⟩, (5.19)∑

m̸=n

(E0
m − E0

n)c1nmδlm = −⟨ψ0
l |H ′|ψ0

n⟩ + E1
nδln. (5.20)

It has two cases as follows, first l = n∑
m̸=n

(E0
m − E0

n)c1nmδnm = −⟨ψ0
n|H ′|ψ0

n⟩ + E1
nδnn, (5.21)

E1
n = ⟨ψ0

n|H ′|ψ0
n⟩.

It recover to first-order correction to the energy (5.14). Second case, l ̸= n, is

(E0
l − E0

n)c1nl = −⟨ψ0
l |H ′|ψ0

n⟩, (5.22)

c1nl =
⟨ψ0

l |H ′|ψ0
n⟩

E0
n − E0

l

, (5.23)
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or, changing index l → m,

c1nm =
⟨ψ0

m|H ′|ψ0
n⟩

E0
n − E0

m

. (5.24)

Therefore first-order correction to the wavefunction reads

ψ1
n =

∑
m̸=n

c1nmψ
0
m =

∑
m̸=n

⟨ψ0
m|H ′|ψ0

n⟩
E0

n − E0
m

ψ0
m. (5.25)

5.3 Second-order Contribution

Let us consider second-order correction. we take the inner product with

ψ0
n to the equation (5.10):

⟨ψ0
n|H0|ψ2

n⟩ + ⟨ψ0
n|H ′|ψ1

n⟩ = E0
n⟨ψ0

n|ψ2
n⟩ + E1

n⟨ψ0
n|ψ1

n⟩ + E2
n⟨ψ0

n|ψ0
n⟩. (5.26)

By using the Hermiticity of H0 and orthonormality of complete set, we obtain

⟨H0ψ0
n|ψ2

n⟩ + ⟨ψ0
n|H ′|ψ1

n⟩ = E0
n⟨ψ0

n|ψ2
n⟩ + E1

n⟨ψ0
n|ψ1

n⟩ + E2
n�����:1
⟨ψ0

n|ψ0
n⟩,

������
E0

n⟨ψ0
n|ψ2

n⟩ + ⟨ψ0
n|H ′|ψ1

n⟩ = ������
E0

n⟨ψ0
n|ψ2

n⟩ + E1
n⟨ψ0

n|ψ1
n⟩ + E2

n. (5.27)

We obtain a formula for E2
n:

E2
n = ⟨ψ0

n|H ′|ψ1
n⟩ − E1

n⟨ψ0
n|ψ1

n⟩, (5.28)

but

⟨ψ0
n|ψ1

n⟩ =
∑
m̸=n

c1nm⟨ψ0
n|ψ0

m⟩ =
∑
m̸=n

c1nmδmn = 0. (5.29)

Therefore, the second-order correction to energy becomes

E2
n = ⟨ψ0

n|H ′|ψ1
n⟩ =

∑
m ̸=n

c1nm⟨ψ0
n|H ′|ψ0

m⟩,

=
∑
m̸=n

⟨ψ0
m|H ′|ψ0

n⟩⟨ψ0
n|H ′|ψ0

m⟩
E0

n − E0
m

,

=
∑
m̸=n

|⟨ψ0
m|H ′|ψ0

n⟩|2

E0
n − E0

m

. (5.30)

This is the result of second-order correction to the energy.
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To find the second-order correction to the wavefunction, let us rewrite

equation (5.10) as

(H0 − E0
n)ψ2

n = −(H ′ − E1
n)ψ1

n + E2
nψ

0
n. (5.31)

Similarly to first-order correction, ψ2
n can be expressed as a linear combination of

unperturbed wavefunction i.e.

ψ2
n =

∑
m̸=n

c2nmψ
0
m. (5.32)

By using the equation (5.16), (5.32) and unperturbed Schrödinger’s equation (5.1)

to the equation (5.31) gives

∑
m̸=n

(E0
m − E0

n)c2nmψ
0
m = −

∑
m̸=n

(H ′ − E1
n)c1nmψ

0
m + E2

0ψ
0
n. (5.33)

Taking an inner product with ψ0
l , we get

∑
m̸=n

(E0
m − E0

n)c2nm⟨ψ0
l |ψ0

m⟩ = −
∑
m̸=n

c1nm⟨ψ0
l |(H ′ − E1

n)|ψ0
m⟩ + E2

0⟨ψ0
l |ψ0

n⟩,∑
m̸=n

(E0
m − E0

n)c2nmδlm = −
∑
m̸=n

c1nm⟨ψ0
l |H ′|ψ0

m⟩ + E1
n

∑
m̸=n

c1nmδlm + E2
0δln.

(5.34)

If l = n, LHS is zero and second term of RHS also zero. Hence, the equation (5.34)

will recover to second-order correction to energy. For l ̸= n, the last term of RHS

is zero and the equation (5.34) will become

(E0
l − E0

n)c2nl = −
∑
m̸=n

c1nm⟨ψ0
l |H ′|ψ0

m⟩ + E1
nc

1
nl.

Using the first-order correction to the energy (5.14) and coefficient c1nm (5.24), the

coefficient c2nl reads

(E0
l − E0

n)c2nl = −
∑
m̸=n

⟨ψ0
m|H ′|ψ0

n⟩⟨ψ0
l |H ′|ψ0

m⟩
E0

n − E0
m

+
⟨ψ0

n|H ′|ψ0
n⟩⟨ψ0

l |H ′|ψ0
n⟩

E0
n − E0

l

,

c2nl =
∑
m̸=n

⟨ψ0
m|H ′|ψ0

n⟩⟨ψ0
l |H ′|ψ0

m⟩
(E0

n − E0
l )(E0

n − E0
m)

− ⟨ψ0
n|H ′|ψ0

n⟩⟨ψ0
l |H ′|ψ0

n⟩
(E0

n − E0
l )2

. (5.35)
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Therefore the second-order correction to the wavefunction, by interchanging index

l ⇔ m, is expressed as

ψ2
n =

∑
m̸=n

[∑
l ̸=n

⟨ψ0
l |H ′|ψ0

n⟩⟨ψ0
m|H ′|ψ0

l ⟩
(E0

n − E0
m)(E0

n − E0
l )

− ⟨ψ0
n|H ′|ψ0

n⟩⟨ψ0
m|H ′|ψ0

n⟩
(E0

n − E0
m)2

]
ψ0
m. (5.36)

Summary, wavefunction and energy of new Hamiltonian (5.4) by consideration

with perturbation theory are given by (5.6) and (5.5) where first-order corrections

to the energy and wavefunction are (5.14) and (5.25) respectively, and second-

order correction to the energy and wavefunction are (5.30) and (5.36) respectively.

However, the perturbation theory gives us just an approximation value. Hence, if

we obtain more higher-order than first or second one e.g. E0
n +E1

n +E2
n +E3

n + ...

the solution is quite close to the exact value En.



CHAPTER VI

RESULTS AND DISCUSSIONS

6.1 Newton’s equivalent Hamiltonians with quantum infinite square well

As part of our work, we consider 1-parameter family Newton’s equivalent

Hamiltonians with infinite square well potential. Mathematical form is expressed

as

V (x) =


0, if 0 ≤ x ≤ L

∞, otherwise.

(6.1)

The potential is illustrated in Figure 7

V (x) = ∞

IIII II

V (x) = ∞

0 LL/2

aa

x

Figure 7: Infinite square well system

Inside the well, the NEQH is given by

Ĥ =
1

2β2m

(
e−i~β ∂

∂x + ei~β
∂
∂x

)
− 1

β2m
. (6.2)

First, we want to check whether the NEQH (6.2) is a linear operator. The property

of linear operator is given by

Ĥ(a1ψ1 + a2ψ2) = a1Ĥψ1 + a2Ĥψ2.
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Let us consider NEQH (6.2)

Ĥ(a1ψ1 + a2ψ2) =
[ 1

2β2m

(
e−i~β ∂

∂x + ei~β
∂
∂x

)
− 1

β2m

]
(a1ψ1 + a2ψ2) ,

=
1

β2m

(
a1e

−i~β ∂
∂xψ1 + a2e

−i~β ∂
∂xψ2 + a1e

i~β ∂
∂xψ1 + a2e

i~β ∂
∂xψ2

)
− 1

β2m
(a1ψ1 + a2ψ2),

=
1

2β2m

[
a1

(
e−i~β ∂

∂x + ei~β
∂
∂x

)
ψ1 + a2

(
e−i~β ∂

∂x + ei~β
∂
∂x

)
ψ2

]
− 1

β2m
(a1ψ1 + a2ψ2),

= a1

[
1

2β2m

(
e−i~β ∂

∂x + ei~β
∂
∂x

)
− 1

β2m

]
ψ1

+a2

[
1

2β2m

(
e−i~β ∂

∂x + ei~β
∂
∂x

)
− 1

β2m

]
ψ2,

= a1Ĥψ1 + a2Ĥψ2. (6.3)

The NEQH agrees with property of linear operator, so the NEQH is linear operator.

The NEQH operating on a wavefunction ψ(x) is given by

Ĥψ(x) =
1

2β2m

(
e−i~β ∂

∂xψ(x) + ei~β
∂
∂xψ(x)

)
− 1

β2m
ψ(x). (6.4)

Thus the Schrödinger equation will become a differential equation of infinite order

Ĥψ(x) = ENψ(x),

1

2β2m

(
e−i~β ∂

∂xψ(x) + ei~β
∂
∂xψ(x)

)
− 1

β2m
ψ(x) = ENψ(x). (6.5)

where EN is defined as energy of NEQH. Consider an ansatz

ψ(x) = eiγx, (6.6)

substituting (6.6) into (6.5) gives

eiγ(x−i~β) + eiγ(x+i~β) = (2β2mEN + 2)eiγx,(
eγ~β + e−γ~β

)
2

���eiγx = (β2mEN + 1)���eiγx,

cosh(γ~β) = 1 + β2mEN . (6.7)
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We have not assumed anything on γ. So let us write

γ = γR + iγI , (6.8)

where γR, γI ∈ R. Substituting (6.8) into (6.7) give

cosh(γR~β)cos(γI~β) + isinh(γR~β)sin(γI~β) = 1 + β2mEN . (6.9)

By demanding that the imaginary part of the left-hand-side vanishes, we obtain

the conditions

sinh(γR~β)sin(γI~β) = 0, (6.10)

where solution is

γR = 0, or γI =
nπ

~β
. (6.11)

Case 1: γR = 0. In this case, the equation (6.9) reduces to

cos(γI~β) = 1 + β2mEN . (6.12)

This case is only valid when

−2

mβ2
≤ EN ≤ 0. (6.13)

Case 2: γI = nπ
~β . In this case, the equation (6.9) reduces to

cosh(γR~β)(−1)n = 1 + β2mEN . (6.14)

This is further separated into two subcases:

Case 2.1: γI = nπ
~β with n even, in this case equation (6.14) reads

cosh(γR~β) = 1 + β2mEN . (6.15)

This is valid for

EN ≥ 0. (6.16)

Case 2.2: γI = nπ
~β with n odd, in this case equation (6.14) becomes

cosh(γR~β) = −(1 + β2mEN). (6.17)
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This is valid for

EN ≤ −2

mβ2
. (6.18)

According to analog classical mechanics, when a particle has energy E less than

global minimum Vmin of potential, i.e. E < Vmin, there is no physically acceptable

solution in this case. Hence, cases 1 & 2.2 are invalid. For this, we only have case

2.1. This gives

e~βγ + e−~βγ = 2β2mEN + 2,

e2~βγ + 1 = 2mENβ2e~βγ + 2e~βγ,

(e~βγ)2 − (2mENβ2 + 2)e~βγ + 1 = 0,

e~βγ =
(2mENβ2 + 2) ±

√
(2mENβ2 + 2)2 − 4

2
,

lne~βγ = ln
(

(mENβ2 + 1) ±
√

(mENβ2 + 1)2 − 1
)
,

γ± =
1

~β
ln
(

(mENβ2 + 1) ±
√

(mENβ2 + 1)2 − 1
)
.

(6.19)

The relationship between γ+ and γ− of equation (6.19) is

γ− =
1

~β
ln
(

(mENβ2 + 1) −
√

(mENβ2 + 1)2 − 1
)
,

=
1

~β
ln

[(
(mENβ2 + 1) −

√
(mENβ2 + 1)2 − 1

)
×(

(mENβ2 + 1) +
√

(mENβ2 + 1)2 − 1
)

(
(mENβ2 + 1) +

√
(mENβ2 + 1)2 − 1

)],
=

1

~β
ln

(
(mENβ2 + 1)2 − ((mENβ2 + 1)2 − 1)

(mENβ2 + 1) +
√

(mENβ2 + 1)2 − 1

)
,

=
1

~β
ln
(

(mENβ2 + 1) +
√

(mENβ2 + 1)2 − 1
)−1

,

= − 1

~β
ln
(

(mENβ2 + 1) +
√

(mENβ2 + 1)2 − 1
)
,

= −γ+. (6.20)
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Recalling the ansatz (6.6), general solution to (6.5) is

ψ(x) =
∞∑

k=−∞

Ak,+e
i(γ++ iπ

~β (2k))x +
∞∑

k=−∞

Ak,−e
i(γ−+ iπ

~β (2k))x, (6.21)

where γ+ = 1
~β ln

(
(mENβ2 + 1) +

√
(mENβ2 + 1)2 − 1

)
.

Let us consider a special solution k = 0. The general solution (6.21) reduce to

ψ(x) = c1e
iγ+x + c2e

iγ−x, (6.22)

where c1 = A0,+ and c2 = A0− are arbitrary constants.

The continuity conditions at the boundaries x = 0 and x = L are given by

ψ(x = 0) = 0; c1 + c2 = 0, c2 = −c1, (6.23)

ψ(x = L) = 0; c1e
iγ+L + c2e

iγ−L = 0. (6.24)

Eq. (6.24) can be further simplified as follows

c1e
iγ+L − c1e

iγ−L = 0,

eiγ+L − eiγ−L = 0,

ei(γ+−γ−)L − 1 = 0,

ei(γ+−γ−)L = 1. (6.25)

Comparing equation (6.25) with Euler’s equation ei2nπ = cos(2nπ)± isin(2nπ) = 1

this gives

(γ+ − γ−)L = 2nπ, n = 1, 2, 3, . . . (6.26)

According to relation (6.20) then the equation (6.26) becomes

γ+ =
nπ

L
=
nπ

2a
, n = 1, 2, 3, . . . (6.27)

where “a” is defined as half width of the well, L = 2a. Hence the solution (6.22)

with continuity conditions (6.23) reads

ψ(x) = c1

(
ei(

nπ
2a )x − e−i(nπ

2a )x
)
. (6.28)
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Using Euler’s equation, e±iθ = cosθ ± isinθ, we obtain

ψ(x) = c1(cos(
nπx

2a
) + isin(

nπx

2a
) − cos(

nπx

2a
) + isin(

nπx

2a
)),

= Asin(
nπx

2a
), (6.29)

where A = 2ic1 is an arbitrary constant. According to normalization condition,∫ 2a

0

dxψ∗(x)ψ(x) = 1, (6.30)

the constant A becomes ∫ 2a

0

dx
∣∣A∣∣2sin2(

nπx

2a
) = 1,∣∣A∣∣2

2

∫ 2a

0

dx
(

1 − cos(
nπx

a
)
)

= 1,∣∣A∣∣2
2

(
2a−

���������:0a

nπ
sin(

nπx

a
)
∣∣∣2a
0

)
= 1,

A =

√
1

a
. (6.31)

Therefore, normalized wavefunction of NEQH reads

ψn(x) =

√
1

a
sin(

nπx

2a
), n = 1, 2, 3, . . . (6.32)

To obtain the energy spectrum, substituting equation (6.32) into (6.4),

Ĥψ(x) =

[
1

2β2m

(
e−i~β ∂

∂x + ei~β
∂
∂x

)
− 1

β2m

][(√
1

a
sin(

nπx

2a
)

)]
,

=
1

2β2m

√
1

a

(
sin(

nπ(x− i~β)

2a
) + sin(

nπ(x+ i~β)

2a
)

)
− 1

β2m

(√
1

a
sin(

nπx

2a
)

)
,

=
1

2β2m

√
1

a

(
sin(

nπx

2a
)cos(

i~βnπ
2a

) + sin(
nπx

2a
)cos(

i~βnπ
2a

)

)
− 1

β2m

(√
1

a
sin(

nπx

2a
)

)
,

=
1

β2m
cos(

i~βnπ
2a

)

(√
1

a
sin(

nπx

2a
)

)
− 1

β2m

(√
1

a
sin(

nπx

2a
)

)
,

=

(
1

β2m
cos(

i~βnπ
2a

) − 1

β2m

)
ψ(x), (6.33)
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and using the Schrödinger’s equation, the energy of this system is given by

Ĥψ(x) = ENψ(x),(
1

β2m
cos(

i~βnπ
2a

) − 1

β2m

)
ψ(x) = EN

n ψ(x),(
1

β2m
cosh(

~βnπ
2a

) − 1

β2m

)
ψ(x) = EN

n ψ(x). (6.34)

Hence, the energy spectrum of this system becomes

EN
n =

1

β2m
cosh(

~βnπ
2a

) − 1

β2m
. (6.35)

As we stated in previous chapter that as the suitable limit of parameter, the NEH

will recover to standard Hamiltonian. For this, if we take limit β → 0 to NEQH

energy (6.35), we expect that the energy spectrum of (standard) infinite square

well (3.15) is obtained. So, using Taylor’s expansion to (6.35) and taking the limit

of parameter β → 0 , we obtain

EN
n =

1

β2m

[
1 +

~2β2n2π2

2(2a)2
+

~4β4n4π4

4!(2a)4
+ ...

]
− 1

β2m
,

=
1

β2m
+

~2n2π2

2m(2a)2
+

~4β2n4π4

4!m(2a)4
+ ...− 1

β2m
,

lim
β→0

EN
n =

n2π2~2

8ma2
= ES

n , (6.36)

where ES
n is denoted as energy spectrum of standard case.

In contrast to classical case, the NEQH energy (6.35) is discrete. Recalling

the standard infinite square well case, the energy has entirely discrete spectrum

which consist infinite number of energy levels. Therefore, the result of NEQH

energy also contains infinite number of energy levels similar to the standard case.

However, difference between NEQH and standard case is that the NEQH is function

of parameter β. Now we will evaluate effect of this parameter β to the energy. Let

us consider (6.35), and rewrite this equation in dimensionless quantities form,

Ed
n =

1

j2
cosh

(
jnπ

2

)
− 1

j2
, (6.37)
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where Ed
n = ma2EN

n /~2 is dimensionless to measure energy, and j = ~β/a is

dimensionless to measure parameter β.

Figure 8: Energy spectrum of NEQH with infinite square well

For example, (dimensionless) energy plot for n = 1, 2, 3, 4, 5 with vary-

ing parameter j is showed in Figure 8. According to this plot, NEQH energy is

monotonically increasing i.e. energies of each levels are increase with respect to in-

creasing of parameter j. Moreover, for the higher order of energy level for example

n=5, it increases quicker than the lower one..

Taking limit j → 0 to equation (6.37) gives

lim
j→0

Ed
n =

n2π2

8
. (6.38)

NEQH energy recover to dimensionless form of standard energy (6.36). List of

standard Hamiltonian energy levels (6.38) are shown in Table 2, and list of NEQH

energy level with parameter j are also presented in Table 3.
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Table 2: List of energy levels of standard Hamiltonian

n energy level (8Ed
n/π

2)

1 1

2 4

3 9

4 16

5 25

6 36

...
...

We have already shown that for small j, NEQH energy is close to standard

energy. We also know that the NEQH energy is monotonically increase, so it can be

expanded by series expansion. After that, we will consider higher order of energy

spectrum by using perturbation in j and compare with Taylor’s expansion of NEQH

energy. Now let us consider expansion of the NEQH (6.2)

ĤN =
1

2β2m

(
exp

(
−i~β ∂

∂x

)
+ exp

(
i~β

∂

∂x

))
− 1

β2m
,

=
1

β2m
cos(~β

∂

∂x
) − 1

β2m
,

=
1

β2m

(
1 −

(~β ∂
∂x

)2

2!
+

(~β ∂
∂x

)4

4!
−

(~β ∂
∂x

)6

6!
+

(~β ∂
∂x

)8

8!
− ...

)
− 1

β2m
,

=
1

β2m
− ~2

2m

∂2

∂x2
+

~4β2

4!m

∂4

∂x4
− ~6β4

6!m

∂6

∂x6
+

~8β6

8!m

∂8

∂x8
− ...− 1

β2m
,

= − ~2

2m

∂2

∂x2
+

~4β2

24m

∂4

∂x4
− ~6β4

6!m

∂6

∂x6
+

~8β6

8!m

∂8

∂x8
− ...,

= H0 +H1 +H2 +H3 + · · · . (6.39)

Therefore, zero-order perturbation Hamiltonian (standard Hamiltonian) gives

H0 = − ~2

2m

∂2

∂x2
. (6.40)
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First-order perturbation Hamiltonian gives

H1 =
~4β2

24m

∂4

∂x4
. (6.41)

Second-order perturbation Hamiltonian gives

H2 = −~6β4

6!m

∂6

∂x6
. (6.42)

Recalling the perturbation theory, the first-order perturbation energy is expressed

by equation (5.14). This gives

E1
n = ⟨ψ0

n|H1|ψ0
n⟩,

=

∫ 2a

0

√
1

a
sin(

nπx

2a
)
~4β2

24m

(
∂4

∂x4

√
1

a
sin(

nπx

2a
)

)
dx,

=
1

a

~4β2

24m

∫ 2a

0

sin(
nπx

2a
)
∂4

∂x4
sin(

nπx

2a
)dx,

=
1

a

~4β2

24m

(nπ
2a

)4 ∫ 2a

0

sin2(
nπx

2a
)dx,

=
1

a

~4β2

24m

(nπ
2a

)4(2a

2

)
,

=
n4~4β2π4

384ma4
. (6.43)

Hence, first-order correction to the energy is

E1
n =

n4~4β2π4

384ma4
. (6.44)

Expanding NEQH energy gives

EN
n =

1

β2m
cosh

(
~βnπ

2a

)
− 1

β2m
,

=
1

β2m

[
1 +

1

2

(
~βnπ

2a

)2

+
1

4!

(
~βnπ

2a

)4

+
1

6!

(
~βnπ

2a

)6

+ ·

]
− 1

β2m
,

=
1

β2m
+

n2~2π2

2m(2a)2
+
n4~4β2π4

24m(2a)4
+
n6~6β4π6

6!m(2a)6
+ · · · − 1

β2m.
,

=
n2~2π2

8ma2
+
n4~4β2π4

384ma4
+
n6~6β4π6

6!m(2a)6
+ · · · ,

= E0
n + E1

n + E2
n + · · · , (6.45)
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where E0
n and E1

n are zero-order energy (unperturbed energy) and first-order en-

ergy. Notice that the first-order correction to the energy (6.44) and first-order of

expanding NEQH energy (6.45) are equivalent.

According to perturbation of wavefunction, notice that the wavefunctions

of standard (3.14) and NEQH (6.32) are the same value. In the sense, these wave-

functions are not perturbed in parameter β. Hence, we expect that perturbation

wavefunctions is zero. Now The expansion of perturbed wavefunctions are given

by,

ψn = ψ0
n + ψ1

n + · · · , (6.46)

where ψ0
n are unperturbed wavefunctions and ψ1

n are fist-order perturbed wavefunc-

tions. The first-order correction to wavefunction is expressed by equation (5.25)

ψ1
n =

∑
r ̸=n

⟨ψ0
r |H1|ψ0

n|⟩
(E0

n − E0
r )

ψ0
r .

We have

H1|ψ0
n⟩ =

~4β2

24m

∂4

∂x4

√
1

a
sin
(nπx

2a

)
, (6.47)

=
~4β2

24m

√
1

a

(nπ
2a

)4
sin
(nπx

2a

)
, (6.48)

then

ψ1
n =

∑
r ̸=n

∫ 2a

0

√
1
a
sin( rπx

2a
)~

4β2

24m

√
1
a

(
nπ
2a

)4
sin(nπx

2a
)dx

~2π2

2mL2 (n2 − r2)
ψ0
r ,

=
n4π2~2β2

48a3

∑
r ̸=n

∫ 2a

0
sin( rπx

2a
)sin(nπx

2a
)dx

r2 − n2
ψ0
r ,

=
n4π2~2β2

24a3

∑
r ̸=n

an�����: 0
sin(rπ)cos(nπ) − arcos(rπ)�����: 0

sin(nπ)

r2 − n2

√
1

a
sin
(rπx

2a

)
,

= 0. (6.49)

The first-order correction to the wavefunction is zero. Therefore the NEQH wave-

functions reads

ψn = ψ0
n + ψ1

n =

√
1

a
sin
(nπx

2a

)
. (6.50)
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It satisfies what we expect.

For the case of second-order correction we need to modify formula (5.30)

which add second-order term to Hamiltonian namely

H = H0 + lH1 + l2H2. (6.51)

Wavefunction and energy can be expressed in power series as

ψn = ψ0 + lψ1 + l2ψ2 + · · · ,

En = E0
n + lE1

0 + l2E2
n + · · · .

Substituting into Schrödinger’s equation, Hψn = Enψn, the second-order (l2) is

given by

H0ψ2
n +H1ψ1

n +H2ψ0
n = E0

nψ
2
n + E1

nψ
1
n + E2

nψ
0
n. (6.52)

Taking inner product ψ0
n, we obtain

⟨ψ0
n|H0|ψ2

n⟩ + ⟨ψ0
n|H1|ψ1

n⟩ + ⟨ψ0
n|H2|ψ0

n⟩ = E0
n⟨ψ0

n|ψ2
n⟩ + E1

n⟨ψ0
n|ψ1

n⟩ + E2
n⟨ψ0

n|ψ0
n⟩.

(6.53)

For the Hermiticity of H0 the first term of left-hand-side of the equation (6.53)

reads

⟨ψ0
n|H0|ψ2

n⟩ = ⟨H0ψ0
n|ψ2

n⟩ = E0
n⟨ψ0

n|ψ2
n⟩, (6.54)

and cancel out to the first term of right-hand-side. Hence the equation (6.53)

becomes

⟨ψ0
n|H1|ψ1

n⟩ + ⟨ψ0
n|H2|ψ0

n⟩ = E1
n⟨ψ0

n|ψ1
n⟩ + E2

n. (6.55)

Writing ψ1
n with linear combination of ψ0

n and substituting into equation (6.55)

gives ∑
m̸=n

c1nm⟨ψ0
n|H1|ψ0

m⟩ + ⟨ψ0
n|H2|ψ0

n⟩ = E1
n

∑
m̸=n

⟨ψ0
n|ψ0

m⟩ + E2
n. (6.56)

Using orthonormality of wavefunction the first term of right-hand-side of equation

(6.56) is zero, and using equation (5.24) the second-order correction to energy is
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expressed as

E2
n =

∑
m̸=n

⟨ψ0
m|H1|ψ0

n⟩⟨ψ0
n|H1|ψ0

m⟩
E0

n − E0
m

+ ⟨ψ0
n|H2|ψ0

n⟩,

=
∑
m̸=n

|⟨ψ0
n|H1|ψ0

m⟩|2

E0
n − E0

m

+ ⟨ψ0
n|H2|ψ0

n⟩. (6.57)

Substituting equation (6.41), (6.42) into equation (6.57) the second-order correction

to the energy is then given by

E2
n =

∑
r ̸=n

∣∣∣∣∣⟨√ 1
a
sin
(
nπx
2a

)∣∣∣∣∣~4β2

24m
∂4

∂x4

√
1
a
sin
(
rπx
2a

)⟩∣∣∣∣∣
2

~2π2(n2−r2)
8ma2

+ ⟨ψ0
n|H2|ψ0

n⟩,

=
∑
r ̸=n

∣∣∣∣∣ 1a ~4β2

24m

⟨
sin
(
nπx
2a

)∣∣∣∣∣ ∂4

∂x4 sin
(
rπx
2a

)⟩∣∣∣∣∣
2

~2π2(n2−r2)
8ma2

+ ⟨ψ0
n|H2|ψ0

n⟩,

=
∑
r ̸=n

∣∣∣∣∣ 1a ~4β2

24m

(
nπ
2a

)4 ∫ 2a

0

sin
(nπx

2a

)
sin
(rπx

2a

)
dx

∣∣∣∣∣
2

~2π2(n2−r2)
8ma2

+ ⟨ψ0
n|H2|ψ0

n⟩,

=
∑
r ̸=n

∣∣∣∣∣ 1a ~4β2

24m

(
nπ
2a

)4 [
an�����: 0

sin(rπ)cos(nπ) − arcos(rπ)�����: 0
sin(nπ)

] ∣∣∣∣∣
2

~2π2(n2−r2)
8ma2

+ ⟨ψ0
n|H2|ψ0

n⟩,

(6.58)

E2
n = ⟨ψ0

n|H2|ψ0
n⟩ =

⟨√1

a
sin
(nπx

2a

)∣∣∣−~6β4

6!m

∂6

∂x6

√
1

a
sin
(nπx

2a

)⟩
,

= −1

a

~6β4

6!m

(nπ
2a

)6 [
−

�����������:a∫ 2a

0

sin2
(nπx

2a

)
dx
]
,

=
n6π6~6β4

6!m(2a)6
. (6.59)

This energy E2
n agrees with the second-order energy which expand by Talor’s ex-

pansion (6.45).

Second-order correction to the wavefunction can be found. By rewriting
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equation (6.52) and taking inner product with ψ0
l , we obtain

(H0 − E0
n)ψ2

n = −(H1 − E1
n)ψ1

n − (H2 − E2
n)ψ0

n,

⟨ψ0
l |(H0 − E0

n)|ψ2
n⟩ = −⟨ψ0

l |(H1 − E1
n)|ψ1

n⟩ − ⟨ψ0
l |(H2 − E2

n)|ψ0
n⟩,∑

m̸=n

(E0
m − E0

n)c2nm⟨ψ0
l |ψ0

m⟩ = −
∑
m̸=n

c1nm⟨ψ0
l |H1|ψ0

m⟩ + E1
n

∑
m̸=n

c1nm⟨ψ0
l |ψ0

m⟩,

−⟨ψ0
l |H2|ψ0

n⟩ + E2
n⟨ψ0

l |ψ0
n⟩. (6.60)

If l = n, the equation (6.60) recover to second-order correction to energy. The

second case, if l ̸= n, the last equation of right-hand-side of (6.60) is zero, then the

equation (6.60) becomes

(E0
l − E0

n)c2nl = −
∑
m̸=n

c1nm⟨ψ0
l |H1|ψ0

m⟩ + E1
nc

1
nl − ⟨ψ0

l |H2|ψ0
n⟩,

= −
∑
m̸=n

⟨ψ0
m|H1|ψ0

n⟩⟨ψ0
l |H1|ψ0

m⟩
E0

n − E0
m

+
⟨ψ0

n|H1|ψ0
n⟩⟨ψ0

l |H1|ψ0
n⟩

E0
n − E0

l

−⟨ψ0
l |H2|ψ0

n⟩, (6.61)

c2nl =
∑
m̸=n

⟨ψ0
m|H1|ψ0

n⟩⟨ψ0
l |H1|ψ0

m⟩
(E0

n − E0
l )(E0

n − E0
m)

− ⟨ψ0
n|H1|ψ0

n⟩⟨ψ0
l |H1|ψ0

n⟩
(E0

n − E0
l )2

+
⟨ψ0

l |H2|ψ0
n⟩

E0
n − E0

l

. (6.62)

Hence second-order correction to wavefunctions, by interchanging index l ⇔ m, is

expressed as

ψ2
n =

∑
m̸=n

[∑
l ̸=n

⟨ψ0
l |H1|ψ0

n⟩⟨ψ0
m|H1|ψ0

l ⟩
(E0

n − E0
m)(E0

n − E0
l )

− ⟨ψ0
n|H1|ψ0

n⟩⟨ψ0
m|H1|ψ0

n⟩
(E0

n − E0
m)2

+
⟨ψ0

m|H2|ψ0
n⟩

E0
n − E0

m

]
ψ0
m.

(6.63)

To obtain second-order correction to wavefunction, let us consider the

equation (6.63) by using (6.41) and (6.42). This gives

ψ2
n =

∑
m̸=n


∑
l ̸=n

⟨ψ0
l |H1|ψ0

n⟩⟨ψ0
m|H1|ψ0

l ⟩
(E0

n − E0
m)(E0

n − E0
l )︸ ︷︷ ︸

1

− ⟨ψ0
n|H1|ψ0

n⟩⟨ψ0
m|H1|ψ0

n⟩
(E0

n − E0
m)2︸ ︷︷ ︸

2

+
⟨ψ0

m|H2|ψ0
n⟩

E0
n − E0

m︸ ︷︷ ︸
3

ψ0
m.

(6.64)
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The first term gives

∑
l ̸=n

⟨ψ0
l |H1|ψ0

n⟩⟨ψ0
m|H1|ψ0

l ⟩
(E0

n − E0
m)(E0

n − E0
l )

=
∑
l ̸=n

[ ∫ 2a

0

√
1
a
sin
(

lπx
2a

)
~4β2

24m
∂4

∂x4

√
1
a
sin
(

nπx
2a

)
dx

][ ∫ 2a

0

√
1
a
sin
(

mπx
2a

)
~4β2

24m
∂4

∂x4

√
1
a
sin
(

lπx
2a

)
dx

]
(E0

n − E0
m)(E0

n − E0
l )

,

=
∑
l ̸=n

[
1
a
~4β2

24m

(
nπ
2a

)4 ∫ 2a

0
sin
(

lπx
2a

)
sin
(

nπx
2a

)
dx

][
1
a
~4β2

24m

(
lπ
2a

)4 ∫ 2a

0
sin
(

mπx
2a

)
sin
(

lπx
2a

)
dx

]
(E0

n − E0
m)(E0

n − E0
l )

,

=
∑
l ̸=n

[
1

a

~4β2

24m

(nπ
2a

)4(
al�����:0

sin(nπ)cos(lπ) − ancos(nπ)�����:0
sin(lπ)

) ]

×

[
1

a

~4β2

24m

( lπ
2a

)4(
am�����:0

sin(lπ)cos(mπ) − alcos(lπ)�����:0
sin(mπ)

) ]/
(E0

n − E0
m)(E0

n − E0
l ),

= 0.

The second term gives

⟨ψ0
n|H1|ψ0

n⟩⟨ψ0
m|H1|ψ0

n⟩
(E0

n − E0
m)2

=

[ ∫ 2a

0

√
1
a
sin
(

nπx
2a

)
~4β2

24m
∂4

∂x4

√
1
a
sin
(

nπx
2a

)
dx

][ ∫ 2a

0

√
1
a
sin
(

mπx
2a

)
~4β2

24m
∂4

∂x4

√
1
a
sin
(

nπx
2a

)
dx

]
(E0

n − E0
m)2

,

=

[
1
a
~4β2

24m

(
nπ
2a

)4
���������:a∫ 2a

0
sin2

(
nπx
2a

)
dx

][
1
a
~4β2

24m

(
nπ
2a

)4 ∫ 2a

0
sin
(

mπx
2a

)
sin
(

nπx
2a

)
dx

]
(E0

n − E0
m)2

,

=

[
~4β2

24m

(
nπ
2a

)4][ 1
a
~4β2

24m

(
nπ
2a

)4(
am�����: 0

sin(nπ)cos(mπ) − ancos(nπ)�����: 0
sin(mπ)

) ]
(E0

n − E0
m)2

,

= 0.
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The third term gives

⟨ψ0
m|H2|ψ0

n⟩
E0

n − E0
m

=

∫ 2a

0

√
1
a
sin
(
mπx
2a

) [
− ~6β6

6!m
∂6

∂x6

√
1
a
sin
(
nπx
2a

) ]
dx

E0
n − E0

m

,

=

[
− 1

a
~6β6

6!m

(
nπ
2a

)6 ][− ∫ 2a

0
sin
(

mπx
2a

)
sin
(

nπx
2a

)
dx

]
E0

n − E0
m

,

=

[
1
a
~6β6

6!m

(
nπ
2a

)6 ][(
am�����: 0

sin(nπ)cos(mπ) − ancos(nπ)�����: 0
sin(mπ)

) ]
E0

n − E0
m

,

= 0.

The first, second, and third terms of equation (6.64) are zero. Hence, the second-

order correction to wavefunction is

ψ2
n = 0. (6.65)

The first- and second- order correction to the wavefucntons are zero, thus the

wavefunctions is then given by

ψn = ψ0
n + ψ1

n + ψ2
n =

√
1

a
sin
(nπx

2a

)
. (6.66)
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6.2 Newton’s equivalent Hamiltonians with quantum finite square well

Next physical system, which we apply NEQH, is finite square well poten-

tial:

V (x) =


0, if 0 ≤ x ≤ L

V0, if x < 0, x > L.

(6.67)

The illustration of this potential is expressed in Figure 9.

IIII II

V (x)

0 L

V0

L/2

aa

x

Figure 9: Finite square well system

The difference between this system and infinite square well is that this

system has two cases of energy. First, energy of a particle has greater than potential,

EN > V0. This case is called scattering case. Second case is bound state, and the

energy of a particle has less than potential, EN < V0. As part of our work, we

interested in case of bound state, and showed the occurrence of quantized energy

with Schrödinger’s equation.

Let us follow the standard method of solving finite square well potential
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by first studying the three regions separately.

Region I x < 0,

Region II 0 < x < L, (6.68)

Region III x > L.

In region II (0 < x < L), the potential is zero, V (x) = 0. The NEQH (2.55)

becomes

Ĥ =
1

2β2m

(
e−i~β ∂

∂x + ei~β
∂
∂x

)
− 1

β2m
.

Time independent Schrödinger’s equation gives same solution as infinite square

well. Therefore the solution reads

ψII = Bcos(γ+x) + Csin(γ+x), (6.69)

where γ+ = (1/~β) ln
(
mβ2EN + 1 +

√
(mβ2EN + 1)2 − 1

)
. In order to obtain

energy spectrum, substituting this wavefunction (6.69) into NEQH Schrödinger

equation gives

EN =
1

β2m
cosh(~βγ+) − 1

β2m
. (6.70)

In region I, x < 0, the potential V (x) is a constant, denoted as V (x) = V0. The

Hamiltonian operator (2.55) becomes

Ĥ =
1

2β2m

[
(1 + iβ

√
2mV0)

1/2e−i~β ∂
∂x (1 − iβ

√
2mV0)

1/2 + (i→ −i)
]
− 1

β2m
,

=
1

2β2m

[
(1 − i22β2mV0)

1/2e−i~β ∂
∂x + (i→ −i)

]
− 1

β2m
,

=
1

2β2m

[
(1 + 2β2mV0)

1/2e−i~β ∂
∂x + (1 + 2β2mV0)

1/2ei~β
∂
∂x

]
− 1

β2m
,

=

√
1 + 2β2mV0

2β2m

[
e−i~β ∂

∂x + ei~β
∂
∂x

]
− 1

β2m
. (6.71)

Time independent Schrödinger’s equation then reads√
1 + 2mβ2V0

2β2m

(
e−i~β ∂

∂x + ei~β
∂
∂x

)
ψ(x) − 1

β2m
ψ(x) = ENψ(x). (6.72)
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This is simply a homogeneous ordinary differential equation. Therefore, let us

consider an ansatz ψ(x) = eilx, where l ∈ C. This gives

√
1 + 2mβ2V0cosh(l~β) = 1 +mβ2EN . (6.73)

By writing l in terms of its real and imaginary part as l = lR + ilI , we obtain

cosh(lR~β + ilI~β) =
1 +mβ2EN√
1 + 2mβ2V0

,

cosh(lR~β)cos(lI~β) + i sinh(lR~β)sin(lI~β) =
1 +mβ2EN√
1 + 2mβ2V0

. (6.74)

By demanding that the imaginary part of the left-hand-side vanishes, we obtain

the conditions

lR = 0, or lI =
nπ

~β
. (6.75)

That is, there are two main cases to consider.

Case1: lR = 0. In this case, the equation (6.74) reduces to

cos(lI~β) =
1 +mβ2EN√
1 + 2mβ2V0

. (6.76)

Solution of this equation reads

lI = ± 1

~β
cos−1

(
1 +mβ2EN√
1 + 2mβ2V0

)
+

2kπ

~β
, (6.77)

This case is valid for

−
√

1 + 2mβ2V0 − 1

mβ2
≤ EN ≤

√
1 + 2mβ2V0 − 1

mβ2
. (6.78)

Case2: lI = nπ/~β. In this case, the equation (6.74) reduce to

cosh(~βlR)(−1)n =
1 +mβ2EN√
1 + 2mβ2V0

. (6.79)

This is further separated into two subcases:

Case2.1: lI = nπ/~β with n even. In this case

cosh(~βlR) =
1 +mβ2EN√
1 + 2mβ2V0

. (6.80)
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Solution of this equation reads

lR = ± 1

~β
ln

(
1 +mβ2EN +

√
(1 +mβ2EN)2 − (1 + 2mβ2V0)√

1 + 2mβ2V0

)
. (6.81)

It is valid for

EN ≥
√

1 + 2mβ2V0 − 1

mβ2
. (6.82)

Case2.2:lI = nπ/~β with n odd. In this case,

cosh(~βlR) = − 1 +mβ2EN√
1 + 2mβ2V0

. (6.83)

Solution of this equation reads

lR = ± 1

~β
ln

(
−(1 +mβ2EN) +

√
(1 +mβ2EN)2 − (1 + 2mβ2V0)√
1 + 2mβ2V0

)
. (6.84)

It is valid for

EN ≤
−
√

1 + 2mβ2V0 − 1

mβ2
. (6.85)

In principle, in order to solve the time independent Schrödinger’s equation

(6.72), one starts from giving the value of EN . Then in each region, one determines

the range into which this value of EN falls. This gives the corresponding case to

be considered. We are interested in bound states. So let us first consider the value

of EN such that in Region I&III, Case 1 is applied. This gives

0 ≤ EN ≤
√

1 + 2mβ2V0 − 1

mβ2
. (6.86)

We consider this case because it will reduce in the limit β → 0 to finite square well

in standard quantum mechanics. Now, The solution of wavefunction in Region I is

given by

ψI(x) =
∞∑

k=−∞

(Ak,−e
−lI0x + Ak,+e

lI0x)e
2πkx
~β , (6.87)

where

lI0 =
1

~β
cos−1

(
1 +mβ2EN√
1 + 2mβ2V0

)
. (6.88)
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It can be seen that there are infinite many arbitrary constants Ak,±. So, we restrict

ourself by considering only special case k = 0. The equation (6.87) reduces to

ψI = A0,−e
−lI0x + A0,+e

lI0x. (6.89)

By demanding ψI(x) → 0 as x→ −∞, we obtain

ψI = AelI0x, (6.90)

where A0,− = A is arbitrary constant. In order to obtain energy spectrum for

Region II, substituting wavefunction (6.90) into Schrödinger equation gives

EN =

√
1 + 2β2mV0
β2m

cos(~βlI0) −
1

β2m
. (6.91)

The analysis in Region III can be done in similar way except that the condition

ψIII → 0 as x→ ∞ has to be imposed. This gives

ψIII = De−lI0x. (6.92)

The energy spectrum in this Region is also the same as Region I. Now we have

summary three equations of wavefunction in three region i.e.

ψI = AelI0x,

ψII = Bcos(γ+x) + Csin(γ+x),

ψIII = De−lI0x,

where lI0 = (1/~β)cos−1
(

(mβ2EN + 1)/
√

1 + 2mβ2V0

)
,

and γ+ = (1/~β) ln
(

(mβ2EN + 1) +
√

(mβ2EN + 1)2 − 1
)
.

At the boundaries at x = 0 and x = L has to satisfy continuity conditions

as follows. 1.) ψ is always continuous, and 2.) dψ/dx is continuous. In this case

the first boundary condition at x = 0 tell us

ψI|x=0 = ψII|x=0, (6.93)
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AelI0(0) = Bcos(γ+(0)) + Csin(γ+(0)),

A = B, (6.94)

and second boundary gives

dψI

dx

∣∣∣
x=0

=
dψII

dx

∣∣∣
x=0

, (6.95)

lI0Ae
lI0x|x=0 = −Bγ+sin(γ+x)|x=0 + Cγ+cos(γ+x)|x=0,

lI0A = Cγ+,

C =
lI0
γ+
A. (6.96)

At the boundary x = L is given by

ψII

∣∣
x=L

= ψIII

∣∣
x=L

, (6.97)

Bcos(γ+L) + Csin(γ+L) = De−lI0L, (6.98)

and

dψII

dx

∣∣∣
x=L

=
dψIII

dx

∣∣∣
x=L

, (6.99)

−Bγ+sin(γ+x)|x=L + Cγ+cos(γ+x)|x=L = −lI0De−lI0x|x=L,

−Bγ+sin(γ+L) + Cγ+cos(γ+L) = −lI0De−lI0L. (6.100)

Substituting equation (6.98) into (6.100) and using equation (6.94), (6.96) gives

−Bγ+sin(γ+L) + Cγ+cos(γ+L) = −lI0 (Bcos(γ+L) + Csin(γ+L)) ,

−Aγ+sin(γ+L) +

(
lI0
γ+

)
Aγ+cos(γ+L) = −lI0

(
Acos(γ+L) +

(
lI0
γ+

)
Asin(γ+L)

)
,

−γ+sin(γ+L) +

(
lI0
γ+

)
γ+cos(γ+L) = −lI0cos(γ+L) − lI0

(
lI0
γ+

)
sin(γ+L),

γ2+sin(γ+L) − l2I0sin(γ+L) = 2lI0γ+cos(γ+L),(
γ2+ − l2I0

)
sin(γ+L) = 2lI0γ+cos(γ+L). (6.101)
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This solution (6.101) comes from imaginary part of equation Im(lI0+iγ+)2eiγ+L = 0.

Proof:

Im(lI0 + iγ+)2eiγ+L = Im(l2I0 + 2ilI0γ+ − γ2+)(cos(γ+L) + isin(γ+L)),

= Im
[
(l2I0 − γ2+)ccos(γ+L) − 2γ+lI0sin(γ+L)

i((l2I0 − γ+)sin(γ+L) + 2γ+lI0cos(γ+L))
]
,

= (l2I0 − γ+)sin(γ+L) + 2γ+lI0cos(γ+L), (6.102)

when, Im(lI0 + iγ+)2eiγ+L = 0,

(l2I0 − γ+)sin(γ+L) + 2γ+lI0cos(γ+L) = 0,

(γ2+ − l2I0)sin(γ+L) = 2γ+lI0cos(γ+L). (6.103)

Hence, the solution agree with (6.101). Now let us consider imaginary part of

equation (lI0 + iγ+)2eiγ+L = 0,

Im(lI0 + iγ+)2eiγ+L = 0,

Im(lI0e
iγ+

L
2 + iγ+e

iγ+
L
2 )2 = 0,

Im

[
lI0

(
cos(γ+

L

2
) + i sin(γ+

L

2
)

)
+ iγ+

(
cos(γ+

L

2
) + isin(γ+

L

2
)

)]2
= 0,

Im

[
lI0 cos(γ+

L

2
) + ilI0 sin(γ+

L

2
) + iγ+cos(γ+

L

2
) − γ+sin(γ+

L

2
)

]2
= 0,

Im

lI0 cos(γ+
L

2
) − γ+sin(γ+

L

2
)︸ ︷︷ ︸

x

+ i

(
lI0 sin(γ+

L

2
) + γ+cos(γ+

L

2
)

)
︸ ︷︷ ︸

iy


2

= 0,

consider in square bracket

(x+ iy)2 = x2 + i2xy − y2,

Im(x+ iy)2 = 2xy,

so the imaginary part is given by

2

(
lI0 cos(γ+

L

2
) − γ+sin(γ+

L

2
)

)(
lI0 sin(γ+

L

2
) + γ+cos(γ+

L

2
)

)
= 0.

(6.104)
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The equation (6.104) is valid, when two solutions exist as follows

lI0 cos(γ+
L

2
) = γ+sin(γ+

L

2
), (6.105)

lI0 sin(γ+
L

2
) = −γ+cos(γ+

L

2
), (6.106)

or

lI0 = γ+tan

(
γ+L

2

)
= γ+tan(γ+a), (6.107)

lI0 = −γ+cot

(
γ+L

2

)
= −γ+cot(γ+a), (6.108)

where L/2 = a.

Substituting equation for γ+ and lI0, this equation determines the values of energy

EN . Let us consider equation

lI0 =
1

~β
cos−1

(
mβ2EN + 1√
1 + 2mβ2V0

)
,

cos(~βlI0) =
mβ2EN + 1√
1 + 2mβ2V0

,

mβ2EN + 1 = cos(~βlI0)
√

1 + 2mβ2V0. (6.109)

And equation

γ+ =
1

~β
ln
(

(mβ2EN + 1) +
√

(mβ2EN + 1)2 − 1
)
,

by using relation

cosh−1(x) = ln(x+
√

(x2 − 1)), (6.110)

this equation becomes

~βγ+ = cosh−1(mβ2EN + 1),

mβ2EN + 1 = cosh(γ+~β). (6.111)

Equating the equation (6.109) and (6.111) gives

cosh(γ+~β) = cos(~βlI0)
√

1 + 2mβ2V0,

lI0 =
1

~β
cos−1

(
cosh(γ+~β)√
1 + 2mβ2V0

)
. (6.112)
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Conclusion, these equation, (6.107), (6.108) and (6.112) can be solved by graph-

ically. By plotting these equation on the same grid, and looking for intersection

points.

Let us rewrite these equation, (6.107), (6.108) and (6.112) as dimensionless

quantities. But, there are a many dimensionless quantities to choose. First, let us

consider expansion of NEQH with V (x) = V0,

Ĥ =
1

2β2m
(1 + 2β2mV0)

1/2
(
e−i~β ∂

∂x + ei~β
∂
∂x

)
− 1

β2m
,

=
1

2β2m
(1 + 2β2mV0)

1/2
(

1 + (−i~β ∂

∂x
) + (− i

2
~β

∂

∂x
)2 + 1 + (

i

2
~β

∂

∂x
)

+(i~β
∂

∂x
)2 +O(β3)

)
− 1

β2m
,

=
1

2β2m
(1 + 2β2mV0)

1/2

(
2 − ~2β2 ∂

2

∂x2
+O(β3)

)
− 1

β2m
,

=
1

2mβ2

(
2 − ~2β2 ∂

2

∂x2
+ 2β2mV0 +O(β3)

)
− 1

β2m
,

=
1

mβ2
− ~2

2m

∂2

∂x2
+ V0 +O(β) − 1

β2m
,

= ĤS +O(β), (6.113)

where ĤS is standard Hamiltonian. Therefore, substituting(6.113) into Schrödinger

equation gives

EN = ES +O(β). (6.114)

Further, let us consider expansion of γ+ which using relation (6.114)

γ+ =
1

~β
ln
(

(mβ2EN + 1) +
√

(mβ2EN + 1)2 − 1
)
,

=
1

~β
ln
(

(mβ2EN + 1) +
√

(mβ2EN)(mβ2EN + 2)
)
,

=
1

~β
ln
[
1 +mβ2ES +O(β3) +√(

mβ2ES +O(β3)
)(

2 +mβ2ES +O(β3)
)]
,
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γ+ =
1

~β
ln
(

1 +mβ2ES +O(β3) +
√

2mβ2ES +O(β3)
)
,

=
1

~β
ln
(

1 +mβ2ES +O(β3) + (2mβ2ES)1/2
√

1 +O(β)
)
,

=
1

~β
ln
(
1 +mβ2ES +O(β3) + (2mβ2ES)1/2 (1 +O(β))

)
,

=
1

~β
ln
(
1 + (2mβ2ES)1/2 +O(β2)

)
,

=
1

~β
(
(2mβ2ES)1/2 +O(β2)

)
,

=

√
2mES

~
+O(β),

= k +O(β). (6.115)

The wavenumber γ+ can be expanded in standard wavenumber k and term of

parameter β. As limit of β → 0, γ+ will recover to standard case k. According to

standard finite square well [26] dimensionless quantity is defined as ka, so analog to

the standard case, we will define dimensionless quantities in this system as “γ+a”.

Next, let us consider expansion of l

lI0 =
1

~β
cos−1

(
mβ2EN + 1√
1 + 2mβ2V0

)
.

Rewriting this equation and using equation (6.114), we obtain

cos(lI0~β) =
(mβ2EN + 1)√

1 + 2mβ2V0
,

=
mβ2(ES +O(β)) + 1√

1 + 2mβ2V0
,

=
1 +mβ2ES +O(β3)√

1 + 2mβ2V0
, (6.116)

Using Taylor’s expansion to the left-hand-side of equation (6.116) gives

cos(lI0~β) = 1 − (lI0~β)2

2!
+O(β4). (6.117)

Taylor’s expansion to the right-hand-side of equation (6.116) gives

1 +mβ2ES +O(β3)

(1 + 2mβ2V0)1/2
=

[
1 +mβ2ES +O(β3)

] [
1 − 1

2
(2mβ2V0) +O(β4)

]
,

= 1 −mβ2V0 +mβ2ES +O(β3). (6.118)
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Equating left-hand-side and right-hand-side, we obtain

1 − (lI0~β)2

2!
+O(β4) = 1 −mβ2V0 +mβ2ES +O(β3),

−mβ2V0 +mβ2ES +O(β3) = −1

2
l2I0~2β2,

l2I0 =
2m

~2
(V0 − ES) +O(β),

lI0 =

√
2m

~2
(V0 − ES) +O(β),

=

(√
2m

~2
(V0 − ES)

)(
1 +O(β)

)
,

=

√
2m

~2
(V0 − ES) +O(β),

= κ+O(β). (6.119)

We obtain lI0 in the expression of standard κ and parameter β. As limit of β → 0,

lI0 will recover to standard κ. Dimensionless quantities of standard quantum for

wavenumber outside the well is “κa” [26] so, analog to standard case the dimen-

sionless quantities for lI0 is “lI0a”.

Therefore, dimensionless quantities of equation (6.107), (6.108) and (6.112)

become

lI0a︸︷︷︸
y

= γ+a︸︷︷︸
x

tan(γ+a︸︷︷︸
x

),

y = xtan (x) . (6.120)

Equivalent to the equation (6.108) we get

y = −xcot (x) , (6.121)

where y = lI0a, x = γ+a are represent dimensionless to measure size of the square

well. According to (6.112) the dimensionless quantities of this equation reads

~β
a
y = cos−1

 cosh(~β
a
x)√

1 +
(

2ma2V0

~2

)(
~2β2

a2

)
 ,

y =
1

j
cos−1

(
cosh(jx)√

1 + z2j2

)
, (6.122)
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where j = ~β/a presents dimensionless to measure of parameter β, and z =

(2ma2V0/~2)1/2 is dimensionless to measure potential. Hence, we have three equa-

tions to determine energy

y = xtan(x),

y = −xcot(x),

y =
1

j
cos−1

(
cosh(jx)√

1 + z2j2

)
, (6.123)

these equations can be solve graphically. However, we are not solving these equa-

tions simultaneously. We only need intersection points between two equation 8

namely between (6.120) and (6.122), and between (6.121) and (6.122) which showed

in Figure 10.

The energy spectrum can be obtained by rewriting equation (6.70) in di-

mensionless quantity. This gives

Ed
n =

1

j2
cosh(xnj) −

1

j2
, (6.124)

where Ed
n = ma2EN

n /~2 is dimensionless to measure energy and xn is intersection

points. To obtain the energy spectrum, we find out the intersection points xn.

And using these intersection points to equation (6.124) to obtain the energy. For

example, Figure 10 express intersection points between curve of equations (6.123)

for fixed z = 5 and j = 0.0001.

8As we consider symmetry of square well. The equation (6.120) and (6.121) come from the

boundary conditions for odd function and even function. So, we need intersection points from

both functions.
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Figure 10: Intersection points for j = 0.0001 and z = 5

According to Figure 10, we have four intersection points. It is corresponding to

four energy levels which represented in Table 4.

Table 4: Intersection points and energy levels for j = 0.0001,z = 5

n intersection point(xn) energy(8Ed
n/π

2)

1 1.30644 0.691734

2 2.59574 2.73075

3 3.83747 5.96829

4 4.9063 9.75591

The energy spectrum of NEQH with finite square well is depend on both potential

z and parameter j.

In the first case, we consider in fixed the potential z, and vary only param-

eter j. The results are showed in Table 5,6,7, and the illustrations are expressed

in Figure 11, 12, 13.
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Table 5: First energy level of z = 5, z = 10, z = 30, z = 50

parameter, j energy, z = 5 energy, z = 10 energy, z = 30 energy, z = 50

0.0001 0.853393 1.01895 1.15536 1.18579

0.001 0.853391 1.01895 1.15534 1.18575

0.01 0.853169 1.01835 1.1532 1.18217

0.1 0.832842 0.971913 1.05971 1.07416

0.3 0.732041 0.815339 0.865075 0.874127

0.5 0.634472 0.693669 0.7305 0.737512

0.7 0.557518 0.604356 0.634431 0.640291

0.9 0.497726 0.537205 0.563147 0.568275

1.1 0.450606 0.485282 0.508481 0.513116

1.3 0.412772 0.444122 0.465407 0.469695

1.5 0.381846 0.410796 0.430702 0.43474

1.7 0.356158 0.383328 0.402219 0.406075

1.9 0.334522 0.360342 0.378481 0.382203

2.1 0.316073 0.340859 0.358438 0.362064

2.3 0.300174 0.324161 0.341328 0.344886

2.5 0.286342 0.309712 0.326583 0.330097

2.7 0.27421 0.297106 0.313773 0.31726

2.9 0.263489 0.286025 0.302566 0.306042

3.1 0.253952 0.276224 0.2927 0.296178

3.3 0.24542 0.267503 0.28397 0.28746

3.5 0.237744 0.259704 0.276208 0.279721

3.7 0.230806 0.252698 0.269279 0.272824

3.9 0.224507 0.246379 0.263072 0.266657

4.1 0.218765 0.240657 0.257495 0.261126

4.3 0.213511 0.235459 0.252471 0.256155

4.5 0.208686 0.230722 0.247934 0.251678

4.7 0.204243 0.226394 0.24383 0.247639

4.9 0.200137 0.222429 0.240111 0.243992
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parameter, j energy, z = 5 energy, z = 10 energy, z = 30 energy, z = 50

5.1 0.196333 0.218788 0.236738 0.240695

5.3 0.1928 0.215438 0.233675 0.237714

5.5 0.18951 0.212349 0.230893 0.235018

5.7 0.186439 0.209496 0.228364 0.23258

5.9 0.183567 0.206856 0.226065 0.230378

6.1 0.180874 0.20441 0.223976 0.228391

6.3 0.178345 0.20214 0.22208 0.2266

6.5 0.175966 0.200031 0.220359 0.22499

6.7 0.173722 0.198068 0.2188 0.223546

6.9 0.171603 0.196241 0.21739 0.222256

7.1 0.169599 0.194536 0.216118 0.221108

7.3 0.1677 0.192946 0.214973 0.220093

9 0.154816 0.18294 0.209276 0.215683

11 0.144411 0.176259 0.208742 0.217126

13 0.13676 0.172419 0.212061 0.222967

15 0.130646 0.17 0.217639 0.231654

17 0.125448 0.168248 0.224517 0.242255

19 0.120836 0.166745 0.232057 0.254127

21 0.116624 0.165262 0.239803 0.266782

23 0.112708 0.16368 0.247423 0.279824

25 0.109027 0.161945 0.254673 0.292919

27 0.105543 0.160041 0.261379 0.305789
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Table 6: Second energy level of z = 5, z = 10, z = 30, z = 50

parameter, j energy, z = 5 energy, z = 10 energy, z = 30 energy, z = 50

0.0001 3.36893 4.06793 4.62105 4.74306

0.001 3.36892 4.06575 4.61268 4.74291

0.01 3.3682 3.901 4.26442 4.72889

0.1 3.30268 3.41857 3.65538 4.32355

0.3 3.00989 3.14742 3.36851 3.69816

0.5 2.78628 3.0361 3.27589 3.41061

0.7 2.663 3.03067 3.31375 3.32311

0.9 2.60886 3.10005 3.45264 3.37108

1.1 2.5957 3.22458 3.67969 3.52606

1.3 2.59889 3.3886 3.99026 3.77727

1.5 2.59169 3.57548 4.38353 4.12344

1.7 2.53699 3.76316 4.85957 4.56869

1.9 3.91824 5.41656 5.12015

2.1 3.98419 6.04768 5.78593

2.3 6.73677 6.5728

2.5 7.4522 7.48317

2.7 8.1366 8.51074

2.9 8.68681 9.63416

3.1 8.89817 10.8073

3.3 11.9432

3.5 12.8817

3.7 13.2985
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Table 7: Third energy level of z = 5, z = 10, z = 30, z = 50

parameter, j energy, z = 5 energy, z = 10 energy, z = 30 energy, z = 50

0.0001 7.36307 9.12113 10.3959 10.6715

0.001 7.36192 9.11703 10.3781 10.6712

0.01 7.26173 8.82324 9.69101 10.6407

0.1 6.89667 8.2665 8.97586 9.8292

0.3 6.58142 8.4859 9.42814 9.10119

0.5 9.21159 10.7835 9.60307

0.7 9.79026 13.0286 11.0799

0.9 16.1763 13.5926

1.1 19.8056 17.3423

1.3 22.4886

1.5 28.5426

Figure 11: First energy level of z = 5, z = 10, z = 30, z = 50
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Figure 12: Second energy level of z = 5, z = 10, z = 30, z = 50

Figure 13: Third energy level of z = 5, z = 10, z = 30, z = 50

Figure 11 exhibits the first energy levels of potential z = 5, 10, 30, 50. Sim-

ilarly for Figure 12 and 13 show the second energy levels and third one for each

potential respectively. According to the plots, the energy is increased correspond-

ing to increasing of the potential. But, if parameter j increase, it is interesting

because the energies for each energy levels decrease at the beginning, and then

there increase. Moreover, The energy of higher potential is increases quicker than
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the lower one. For increasing of parameter j till some value, the energy levels for

each potentials are disappear except the first level. It is mean that, the energy

of NEQH alway exist at least one state, and number of energy levels are decrease

while parameter j increase.

Recalling the NEQH energy of infinite square well, it will recover to stan-

dard energy at the limit parameter j → 0. Therefore we will expect that the NEQH

energy of finite square well is recover to the standard energy at limit parameter

j → 0. Table 8 shows the energy of standard finite square well for z = 5 and Table

9,10,11,12 show the NEQH energy of finite square well for z = 5 and parameter

j = 0.01, 0.1, 0.3, 0.5 respectively. According to the Table, as parameter j → 0 the

NEQH energy will close to standard case.

Table 8: Energy level of standard finite square well z = 5

n intersection point(xn) energy(8Ed
n/π

2)

1 1.30644 0.691734

2 2.59574 2.73075

3 3.83747 5.96829

4 4.9063 9.75591

Table 9: Energy level of NEQH j = 0.01 and z = 5

n intersection point(xn) energy(8Ed
n/π

2)

1 1.30626 0.691553

2 2.59538 2.73016

3 3.83693 5.96735

4 4.90522 9.75357
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Table 10: Energy levels of NEQH j = 0.1 and z = 5

n intersection point(xn) energy(8Ed
n/π

2)

1 1.28972 0.675077

2 2.56307 2.67705

3 3.78827 5.88614

4 4.79463 9.49672

Table 11: Energy levels of NEQH j = 0.3 and z = 5

n intersection point(xn) energy(8Ed
n/π

2)

1 1.20345 0.59337

2 2.40126 2.43972

3 3.54456 5.59023

Table 12: Energy levels of NEQH j = 0.5 and z = 5

n intersection point(xn) energy(8Ed
n/π

2)

1 1.11209 0.514283

2 2.24147 2.25848

3 3.25629 5.3347

Next, let us consider in second case for fixed parameter j, and vary only

potential z. Then, the plots for fixed j = 0.01, 0.1, 0.3, 0.5, 0.7, and j = 1 as follows

in Figure 14. According to the plots, the number of energy level increase for

increasing of potential. But, for parameter j increase, the number of energy levels

are decrease. Now, as the potential close to infinity, we expect that the energy will
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(a) j = 0.3 (b) j = 0.5

(c) j = 0.7 (d) j = 0.9

(e) j = 1 (f) j = 3

Figure 14: Energy levels with varying potential
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close to standard infinite square well case as limit parameter j → 0. Figure 15

and Table 13 exhibit first and second energy levels of j = 0.0001 for any potential,

z = 0 to z = 50. We will see that the energy tented to energy of standard infinite

square well which showed in Table 2.

Figure 15: Plot of first and second energy levels of finite square well

energy and infinite square well
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Table 13: First and second energy levels of j = 0.0001

potential first level second level potential first level second level

z (8Ed
1/π

2) (8Ed
2/π

2) z (8Ed
1/π

2) (8Ed
2/π

2)

1 0.221386 - 26 0.927259 3.70857

2 0.429855 1.45615 27 0.929812 3.71883

3 0.554909 2.10473 28 0.932192 3.72839

4 0.635644 2.48177 29 0.934416 3.73732

5 0.691734 2.73075 30 0.936498 3.74568

6 0.732899 2.90827 31 0.938453 3.75353

7 0.764377 3.04158 32 0.94029 3.7609

8 0.789221 3.14552 33 0.942022 3.76785

9 0.809327 3.22891 34 0.943655 3.7744

10 0.825931 3.29734 35 0.945199 3.7806

11 0.839875 3.35453 36 0.946661 3.78646

12 0.85175 3.40306 37 0.948046 3.79201

13 0.861985 3.44476 38 0.949362 3.79729

14 0.870898 3.48098 39 0.950613 3.8023

15 0.878729 3.51275 40 0.951803 3.80707

16 0.885664 3.54085 41 0.952937 3.81162

17 0.891849 3.56586 42 0.954019 3.81596

18 0.897399 3.58829 43 0.955052 3.8201

19 0.902407 3.6085 44 0.95604 3.82406

20 0.906949 3.62682 45 0.956986 3.82785

21 0.911086 3.64349 46 0.957892 3.83148

22 0.914872 3.65874 47 0.95876 3.83495

23 0.918348 3.67273 48 0.959593 3.83829

24 0.921551 3.68562 49 0.960393 3.8415

25 0.924513 3.69753 50 0.961163 3.84458
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