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ABSTRACT

We study Non-Minimal Derivative Coupling to Einstein tensor (NMDC)

model of scalar field. We considered it in Palatini formalisms. This study considers

early universe during chaotic inflation driven by a scalar field. We analyse acceler-

ation condition and dynamical phase portrait. We compare our results to standard

general relativity (GR) case (κ = 0), metric formalism case. We present acceler-

ation condition in the three cases. In Palatini-formalism, phase portrait indicates

new saddle point and enlarged acceleration region.



CHAPTER I

INTRODUCTION

1.1 Background and motivation

Current evidences from astrophysical observations convince accelerating expansion

of universe, for instance, redshift of Supernovae Type Ia measurement [1, 2, 3]. The

SN Ia observation shows that the universe comprises of dark energy about 70%

causing late-time cosmic acceleration. In very early universe, inflation supported

by present observations, e.g. cosmic microwave background (CMB) anisotropies

[4], WMAP [5], was introduced [6] to solve standard big bang cosmology problems

such as flatness problem and horizon problem. Contemporary cosmology focuses

on either the early inflationary or late time accelerating expansion hypothesized as

effects of dynamical scalar field such as inflaton or quintessence [7], k-essence [8] or

by effect of modified gravity such as scalar-tensor theories [9, 10, 11].

One can extend scalar-tensor theories to the coupling of scalar field to

gravity sector such as f(ϕ, ϕ,µ, ϕ,µν , ...) which is motivated by Brans-Dicke theory

[12] such that it includes Non-Minimal Coupling (NMC) or Non-Minimal Deriva-

tive Coupling (NMDC) terms. The NMC and NMDC are found to be a spacial

case of Horndeskis theory which is generalization of gravitational theory with at

most second-order derivatives in the equations of motion, making the Horndeski

action the most general scalar-tensor theory [13]. NMDC model can be found in

lower-energy limits of extra-dimension theories [14] and Weyl anomaly of N = 4

conformal supergravity [15, 16]. It is possible to have coupling terms between

derivative of the scalar field and gravity in form of κ1Rϕ,µϕ
,µ and κ2Rµνϕ

,µϕ,ν

which as well result in acceleration without loss of generality [14, 17]. Consider a

special case of κ1Rϕ,µϕ
,µ and κ2Rµνϕ

,µϕ,ν term, we can set κ ≡ κ2 = −2κ1 and
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combination of these two terms gives the Einstein tensor which couples to kinetic

part of scalar field as Gµνϕ
,µϕ,ν [18, 19, 20, 21, 22, 23, 24, 25].

1.2 Objectives

• Derive acceleration condition of NMDC model both in metric and Palatini

formalism.

• Introduce autonomous systems of the models.

• Present dynamical phase portraits of the models with acceleration region.

1.3 Framework

• FRW universe

• NMDC model

• metric and Palatini formalism

• Phase portraits
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1.4 Unit and notation

Units with c = ℏ = kB = 1

[G] = [M−2
rmP ]

[length] = [time] = [L]

[mass] = [energy] = [M]

[energy density: ρ] = [pressure: P ] = [ML−3] = [L−4]

[gµν ] = [dimensionless]

[Γµ
νκ] = [L−1]

[Rµ
νκσ] = [Rµν ] = [R] = [L−2]

[ϕ] = [M]

[κ] = [M−2]

[V (ϕ)] = [M4]

[H] = [M]

[G] = [M−2]

Notation

• G : Newton’s gravitational constant (G = 6.67× 10−8cm3g−1sec−2)

• MrmP : Reduced Plank mass (MrmP = (8πG)−1/2 = 2.4357× 1018GeV)

• a : Scale factor of the universe (where a0 = 1 at the present time)

• t : The cosmic time

• ẋ : Derivative of x variable with respect to t

• x′ : Derivative of x variable with respect to N ≡ ln a
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• H : Hubble parameter
(
H ≡ ȧ

a

)
• ρ : Energy density

• P : Pressure

• w : Equation of state parameter
(
w = P

ρ

)
• weff : Effective equation of state parameter

• R : Ricci scalar

• GR : Einstein’s general relativity theory

• gµν : Metric tensor

• Γµ
νκ : Connection field

• Gµν(g) : Einstein tensor in metric formalism

• Gµν(Γ) : Einstein tensor in Palatini formalism

• ϕ : Scalar field

• V (ϕ) : Scalar field potential



CHAPTER II

STANDARD COSMOLOGY

2.1 Cosmological principle

The Standard cosmology assumes cosmological principle obeying large scale ob-

servational data. These require that the universe is homogeneous and isotropic.

Homogeneity implies that property of space is independent of the position and

isotropy means that universe looks the same from all directions. Hence the metric

that describes homogeneous and isotropy of space-time is Friedmann-Roberson-

Walker (FRW) metric given by

ds2 = −dt2 + a(t)2
[

dr2

1−Kr2
+ r2

(
dθ2 + sin2 θdϕ2

)]
, (2.1)

where t is cosmic time. The coordinates r, θ, ϕ are co-moving coordinates, a is

scale factor and the constant K is spatial curvature. Flat, closed, open geometries

correspond to zero, positive, negative values of k respectively.

2.2 Hubble’s law expansion

Hubble’s observation showed that galaxies are moving away from us, therefore the

universe is not static but expanding. A relation between velocity and physical

distance of objects from us is

v⃗ = H0r⃗, (2.2)

where r⃗ is physical distance, v⃗ is velocity of moving object and H0 is Hubble

constant at present time t0. Considering physical distance r⃗ and co-moving distance

x⃗ can be written as

r⃗ = a(t)x⃗, (2.3)
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where a(t) is scale factor. As a result, recession velocity definition is

v⃗ =
ȧ(t)

a(t)
r⃗, (2.4)

and the Hubble parameter is defined as

H ≡ ȧ(t)

a(t)
. (2.5)

2.3 Cosmological equations

Einstein field equation of general relativity is the following equation

Gµν ≡ Rµν −
1

2
gµνR = 8πGTµν , (2.6)

where Gµν , Rµν , R,G, and Tµν are Einstein tensor, Ricci tensor, Ricci scalar, grav-

itational constant and the energy-momentum tensor, respectively. We give c = 1

and solve the Einstein field equation for FRW universe, and we obtain Friedmann

and acceleration equation:

H2 =
8πG

3
ρ− K

a2
, (2.7)

ä

a
= −4πG

3
(ρ− 3P ) , (2.8)

where ρ(t) and P (t) are the energy density and the pressure. Differentiate Eq.

(2.7) with respect to time,

ä =
8πG

3ȧ

(
2ρaȧ+ a2ρ̇

)
, (2.9)

Eq. (2.9) is substituted in Eq. (2.8) hence

ρ̇+ 3H (ρ+ P ) . (2.10)

This equation is called the continuity equation.

The density parameter which is ratio of the energy density and critical

density is explained as

Ω ≡ ρ

ρc
=

8πG

3H2
ρ, (2.11)
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where critical density is

ρc =
3H2

8πG
. (2.12)

The Friedmann can be rewritten as

Ω− 1 =
K

H2a2
, (2.13)

2.4 Inflation

We believe that inflation occurred in the early universe, thus it solves several prob-

lems such as flatness and horizon problems [6]. The existence of inflation [26] is

when,

ä > 0, (2.14)

which corresponds to

ρ+ 3P < 0. (2.15)

Considering a scalar field, ϕ, the energy density and the pressure of the scalar field

are

ρ =
1

2
ϕ̇2 + V (ϕ), (2.16)

P =
1

2
ϕ̇2 − V (ϕ), (2.17)

where V (ϕ) is potential energy of scalar field and the condition of inflation is

ϕ̇2 < V (ϕ). We substitute the energy density Eq. (2.16) and the pressure Eq.

(2.17) into Eq. (2.7) and Eq. (2.10) giving

H2 =
8πG

3

(
1

2
ϕ̇2 + V (ϕ)

)
, (2.18)

ϕ̈+ 3Hϕ̇+ V,ϕ(ϕ) = 0, (2.19)

where K = 0, c = 1 and V,ϕ(ϕ) ≡ dV/dϕ. The slow-roll condition is introduced

ϕ̇2 ≪ V (ϕ) and ϕ̈≪ 3Hϕ̇. Eq. 2.18 and Eq. (2.19) are approximately given as

H2 ≃ 8πG

3
V (ϕ), (2.20)
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ϕ̇ ≃ − V,ϕ
3H

. (2.21)

Slow-roll parameter are defined as

ϵ ≡ 1

16πG

(
V,ϕ
V

)2

, η ≡ V,ϕϕ
8πGV

. (2.22)

Slow-roll approximation is satisfied when 0 < ϵ ≪ 1 and η ≪ 1. The inflationary

phase ends when ϕ̇2 ≃ V (ϕ).



CHAPTER III

NON-MINIMAL DERIVATIVE COUPLING WITH

SCALAR FIELD IN COSMOLOGY

3.1 Non-Minimal Derivative Coupling to gravity

Since inflation is driven by scalar field called “the inflaton” [6], scalar field models

are allowed to find dynamic of inflaton. Recent scalar field models can describe

accelerating expansion or inflation of the universe. One of the scalar-tensor theories

is Non-Minimal Derivatives Coupling (NMDC) which is extended version of Non-

Minimal Coupling model (NMC) that is motivated by Brans-Dicke models [12]. The

NMC and NMDC are found to be a spacial case of Horndeskis theory generalization

of gravitational theory with at most second-order derivatives in the equations of

motion, making the Horndeski action the most general scalar-tensor theory [13].

Lagrangian densities of NMDC like κ1Rϕ,µ ϕ
,µ and κ2Rµνϕ

,µϕ,ν [14] is pos-

sible to have coupling term between derivative of scalar filed and gravity without

loss of generality. For spacial case of the coupling as κ ≡ −2κ1 = κ2, combination

of the two terms give the Einstein tensor [18, 19, 20, 21, 22, 23, 24, 25].

We consider NMDC model which take the action with this case

S =

∫
dx4

√
−g
[

R

8πGN

− (εgµν + κGµν)ϕ
,µϕ,ν − 2V (ϕ)

]
. (3.1)

The model is a subclass of the Horndeski action (with G5 = ϕκ/2) which is gener-

alized action that is Ostrogradski instability free [13].

3.2 NMDC-Palatini action
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The gravitational action of NMDC in Palatini formalism is proposed [25] as

SPalatini =
M2

P

2

∫
dx4

√
−g
[
R̃(Γ)−

(
εgµν + κG̃µν(Γ)

)
ϕ,µϕ,ν − V (ϕ)

]
, (3.2)

where Gµν(Γ) = Rµν(Γ) − 1
2
R(Γ), R̃(Γ) = gµνR̃µν(Γ) and Ricci tensor is defined

by connection field R̃µν(Γ) = R̃λ
µλν(Γ) = ∂λΓ

λ
µν − ∂νΓ

λ
µλ + Γλ

σλΓ
σ
µν − Γλ

σνΓ
σ
µλ. Tilde

symbol represents the variables which depend on connection field (Γ)

This action Eq. (3.2) is derived in Palatini formalism which allows two

dynamical fields, metric field g and connection field Γ, to vary.

3.3 Field equations of slow-roll NMDC in Palatini formalism

The field equation of NMDC in Palatini formalism was derived and slow-roll ap-

proximated [25]. With slow-roll condition, 0 < |ϕ̇| ≪ 1, it gives modified Friedmann

equation,

H2 ≃ ρtot
3M2

P

[
1 +

3κϕ̇2

2M2
P

(1 + weff)

]
, (3.3)

where ρtot = ρϕ + ρm is total density and weff is the effective equation of state

parameter. Klein-Gordon equation was derived as [25]

ϕ̈

[
ε− 9κḢ

2

(
1− κϕ̇2

M2
P

)
− 3κH2

2

(
5− 6κϕ̇2

M2
P

)]

+ 3Hϕ̇

[
ε−

(
Ḧ

H
+ 4Ḣ

)
κ

(
1− κϕ̇2

2M2
P

)]
+ V,ϕ≃ 0. (3.4)

The NMDC-Palatini effect plays role in chaotic inflationary model, the tensor-to-

scalar ratio and spectral index could pass the Planck 2015 constraint for a range

of κ.



CHAPTER IV

ACCELERATION CONDITION

We consider NMDC model of which the coupling would affect inflation.

First, we derive acceleration condition of NMDC model in metric formalism using

Klein-Gordon equation. We investigate the effect of connection field in Palatini

formalism in comparison to the metric formalism.

4.1 Acceleration condition of NMDC in metric formalism

NMDC Klein-Gordon equation in metric formalism [24] is

ε
(
ϕ̈+ 3Hϕ̇

)
− 3κ

(
H2ϕ̈+ 2HḢϕ̇+ 3H3ϕ̇

)
= −V,ϕ . (4.1)

Under slow-roll condition |Ḣ| ≪ |H2|, the Eq. (4.1) is rewritten as

ϕ̈
(
ε− 3κH2

)
+ 3Hϕ̇

(
ε− 2κḢ − 3κH2

)
+ V,ϕ = 0

ϕ̈
(
ε− 3κH2

)
+ 3Hϕ̇

(
ε− 3κH2

)
+ V,ϕ = 0. (4.2)

Approximating ϕ̈ ≈ 0 at late time, the trajectory is

ϕ̇ ≃ − V,ϕ
3H (ε− 3κH2)

. (4.3)

Friedmann equation is expressed in [24],

H2 ≃ 8πG

3

[
ϕ̇2

2

(
ε− 9κH2

)
+ V

]
. (4.4)

Acceleration condition is defined ä/a ≡ Ḣ + H2, differentiating Eq. (4.4) with
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respect to time t

H2 ≃ 1

3M2
P

[
εϕ̇2

2
− 9κϕ̇2H2

2
+ V

]

2HḢ ≃ 1

3M2
P

[
εϕ̇ϕ̈− 9κ

2

(
2ϕ̇ϕ̈H2 + ϕ̇2(2HḢ)

)
+ V,ϕ ϕ̇

]
≃ 1

3M2
P

[
εϕ̇ϕ̈− 9κϕ̇ϕ̈H2 + 9κϕ̇2HḢ + V,ϕ ϕ̇

]
Ḣ ≃ 1

6M2
P

[
εϕ̇ϕ̈

H
− 9κϕ̇ϕ̈H − 9κϕ̇2Ḣ +

V,ϕ ϕ̇

H

]
, (4.5)

so acceleration condition is expressed as

Ḣ +H2 ≃ εϕ̈ϕ̇

6HM2
P

− 9κϕ̇ϕ̈H

6M2
P

− 9κϕ̇2Ḣ

6M2
P

+
V,ϕ ϕ̇

6HM2
P

+
εϕ̇

6M2
P

− 9κϕ̇2H2

6M2
P

+
V

3M2
P

≃ ϕ̇2

6M2
P

(ε− 9κH2 − 9κḢ) +
V

3M2
P

+
ϕ̇ϕ̈

6M2
P

( ε
H

− 9κH
)
+

V,ϕ ϕ̇

6HM2
P

≃ ϕ̇2

6M2
P

(ε− 9κH2 − 9κḢ) +
V

3M2
P

+
ϕ̇ϕ̈

6M2
PH

(ε− 9κH2) +
V,ϕ ϕ̇

6HM2
P

. (4.6)

Slow-roll condition, |Ḣ| ≪ |H2|, is valid hence Eq. (4.6) is

ä

a
≡ Ḣ +H2 ≈ ϕ̇2

6M2
P

(ε− 9κH2) +
V

3M2
P

+
ϕ̇ϕ̈

6M2
PH

(ε− 9κH2) +
V,ϕ ϕ̇

6HM2
P

. (4.7)

Using Eq. (4.4) and Friedmannn equation that is approximated by slow-

roll field, ϕ̇2 ≪ V ,

H2 ≈ V

3M2
P

(4.8)
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in Eq. (4.7),

ä

a
≈ ϕ̇2

6M2
P

(ε− 9κH2) +
V

3M2
P

(4.9)

+
ϕ̇

6M2
PH

(
−V,ϕ −3Hϕ̇(ε− 3κH2)

ε− 3κH2

)
(ε− 9κH2) +

V,ϕ ϕ̇

6M2
PH

=
ϕ̇2

6M2
P

(ε− 9κH2) +
V

3M2
P

(4.10)

+
ϕ̇

6M2
PH

(
−V,ϕ

ε− 3κH2
− 3Hϕ̇

)
(ε− 9κH2) +

V,ϕ ϕ̇

6M2
PH

=
ϕ̇2

6M2
P

(ε− 9κH2) +
V

3M2
P

− ϕ̇V,ϕ (ε− 9κH2)

6M2
PH(ε− 3κH2)

− ϕ̇2

2M2
P

(ε− 9κH2) +
V,ϕ ϕ̇

6M2
PH

= − ϕ̇2

3M2
P

(ε− 9κH2) +
V

3M2
P

+
V,ϕ ϕ̇

6M2
PH

[
1− (ε− 9κH2)

(ε− 3κH2)

]

= − 1

3M2
P

[
ϕ̇2

(
ε− 9κ

V

3M2
P

)
− V

]
+

V,ϕ ϕ̇

6M2
P

√
V√

3MP

1−
(
ε− 9κ V

3M2
P

)
(
ε− 3κ V

3M2
P

)


= − 1

3M2
P

[
ϕ̇2

(
ε− 3κ

V

M2
P

)
− V

]
+

√
3V,ϕ ϕ̇MP

6M2
P

√
V

1−
(
ε− 3κ V

M2
P

)
(
ε− κ V

M2
P

)
 .(4.11)

For |κV | ≪ |M2
P to avoid super-Planckian regime, binomial approximation, (1 +

x)a ≈ 1 + ax, is valid hence Eq. (4.11) is approximated as

ä

a
≈ − 1

3M2
P

[
ϕ̇2

(
ε− 3κ

V

M2
P

)
− V

]
+

√
3V,ϕ ϕ̇MP

6M2
P

√
V

[
1−

(
ε− 3κ

V

M2
P

)(
ε+ κ

V

M2
P

)]
.

(4.12)

Hence,

ä

a
≈ − 1

3M2
P

[
ϕ̇2

(
ε− 3κ

V

M2
P

)
− V

]
+

√
3V,ϕ ϕ̇MP

6M2
P

√
V

[
1−

(
ε2 − 2κεV

M2
P

− 3κ2V 2

M4
P

)]

≈ − 1

3M2
P

[
ϕ̇2

(
ε− 3κ

V

M2
P

)
− V

]
+

√
3V,ϕ ϕ̇MP

6M2
P

√
V

1− 1 +
2κεV

M2
P

+
�
�

�
��
≈ 0

3κ2V 2

M4
P


= − 1

3M2
P

[
ϕ̇2

(
ε− 3κ

V

M2
P

)
− V

]
+

√
3V,ϕ ϕ̇MP

6M2
P

√
V

(
2κεV

M2
P

)
= − 1

3M2
P

[
ϕ̇2

(
ε− 3κ

V

M2
P

)
− V

]
+
κεϕ̇V,ϕ

√
V√

3M3
P

, (4.13)
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where ε2 = 1. For ä/a > 0, we use late time trajectory Eq. (4.3) and rewrite Eq.

(4.13) as

ϕ̇2
(
ε− 3κ V

M2
P

)
3M2

P

<
V

3M2
P

+
κεϕ̇V,ϕ

√
V√

3M3
P

ϕ̇2

(
ε− 3κ

V

M2
P

)
< V

(
1 +

√
3κεϕ̇V,ϕ√
VMP

)

ϕ̇2 <
V
(
1 +

√
3κεϕ̇V,ϕ√
VMP

)
(
ε− 3κ V

M2
P

)

ϕ̇2 <

V

1 +
√
3κεV,ϕ

− MPV,ϕ
√
3V

(
ε− κV

M2
P

)
(√VMP

)−1

[
ε− 3κ V

M2
P

]
ϕ̇2 < V

1−
 κε(V,ϕ )

2

V
(
ε− κV

M2
P

)
[ε− 9κV

3M2
P

]−1

. (4.14)

We apply chaotic inflation potential, V (ϕ) = V0ϕ
2, to Eq. (4.14) and obtain

ϕ̇2 < V0ϕ
2

1− 4κεV0(
ε− κV0ϕ2

M2
P

)
[ε− 3κV0ϕ

2

M2
P

]−1

, (4.15)

where V0 =
1
2
m2, and m is mass of scalar field.

4.2 Acceleration condition of NMDC in Palatini formalism

Klein-Gordon equation of NMDC modified gravity in Palatini formalism is shown

in [25] under slow-roll approximation, it is

ϕ̈

[
ε− 9κḢ

2

(
1− κϕ̇2

M2
P

)
− 3κH2

2

(
5− 6κϕ̇2

M2
P

)]

+ 3Hϕ̇

[
ε−

(
Ḧ

H
+ 4Ḣ

)
κ

(
1− κϕ̇2

2M2
P

)]
+ V,ϕ ≃ 0. (4.16)

During inflationary era, equation of motion (Eq. (4.16)) is approximately rewritten
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as

ϕ̈ ≃
−V,ϕ−3Hϕ̇

[
ε−

(
�
���
≃0

Ḧ
H
+ 4Ḣ

)
κ
(
1− κϕ̇2

2M2
P

)]

ε−
��������:≃0
9κḢ
2

(
1− κϕ̇2

M2
P

)
− 3κH2

2

(
5− 6κϕ̇2

M2
P

)
ϕ̈ ≃

−V,ϕ−3Hϕ̇
[
ε− 4Ḣκ

(
1− κϕ̇2

2M2
P

)]
ε− 3κH2

2

(
5− 6κϕ̇2

M2
P

)
ϕ̈ ≃

−V,ϕ−3Hϕ̇
(
ε− 4Ḣκ

)
ε− 15κH2

2

(4.17)

ϕ̈ ≃ −V,ϕ−3Hϕ̇ε

ε− 15κH2

2

(4.18)

where
∣∣∣Ḧ/H∣∣∣ ≪ |Ḣ| ≪ |H2| and 0 < |ϕ̇| ≪ 1. Eq.(4.17) is a second order

approximation for it is used to derive very late time trajectory. 4Ḣκ is negligible

in Eq.(4.18) as a result of ε domination.

Modified Friedman equation is derived in [25] with slow-rolling field,

H2 ≃ ρtot
3M2

P

[
1 +

3κϕ̇2

2M2
P

(1 + weff)

]
, (4.19)

where weff = wϕ = Pϕ/ρϕ. We differentiate Eq. (4.19) with respect to time and

fluid equation, ρ̇ = −3H(ρ+ P ), is substituted
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H2 ≃ 1

3M2
P

[
ρϕ +

3κϕ̇2

2M2
P

(ρϕ + Pϕ)

]

2HḢ ≃ 1

3M2
P

[
ρ̇ϕ +

3κ

2M2
P

(2ϕ̇ϕ̈)(ρϕ + Pϕ) +
3κϕ̇2

2M2
P

(ρ̇ϕ + Ṗϕ)

]

Ḣ ≃ 1

2M2
P

[
ρ̇ϕ
3H

+
κϕ̇ϕ̈

HM2
P

(ρϕ + Pϕ) +
3κϕ̇2

2M2
P

(
ρ̇ϕ
3H

+
Ṗϕ

3H

)]

≃ 1

2M2
P

{
−(ρϕ + Pϕ) +

κϕ̇ϕ̈

HM2
P

(ρϕ + Pϕ) +
3κϕ̇2

2M2
P

[
−(ρϕ + Pϕ) +

Ṗϕ

3H

]}

≃ 1

2M2
P

[
−εϕ̇2 +

κϕ̇ϕ̈

HM2
P

εϕ̇2 +
3κϕ̇2

2M2
P

(
−εϕ̇2 +

εϕ̇ϕ̈− V,ϕ ϕ̇

3H

)]

≃ 1

2M2
P

(
−εϕ̇2 +

κεϕ̇3ϕ̈

HM2
P

− 3εκϕ̇4

2M2
P

+
κεϕ̇3ϕ̈

2HM2
P

− κϕ̇3V,ϕ
2HM2

P

)

Ḣ ≃ − εϕ̇2

2M2
P

+
3κεϕ̇3ϕ̈

4HM4
P

− 3εκϕ̇4

4M4
P

− κϕ̇3V,ϕ
4HM4

P

. (4.20)

Ḣ can be derived in another way. Using a density and pressure of scalar

field as ρϕ = εϕ̇2/2 + V and Pϕ = εϕ̇2/2− V respectively,

H2 ≃ ρϕ
3M2

P

[
1 +

3κϕ̇2

2M2
P

(
1 +

Pϕ

ρϕ

)]

≃ 1

3M2
P

[
ρϕ +

3κϕ̇2

2M2
P

(ρϕ + Pϕ)

]
(4.21)

≃ 1

3M2
P

[
εϕ̇2

2
+ V (ϕ) +

3κϕ̇2

2M2
P

(
εϕ̇2

2
+ V (ϕ) +

εϕ̇2

2
− V (ϕ)

)]

≃ 1

3M2
P

(
εϕ̇2

2
+ V (ϕ) +

3κϕ̇2

2M2
P

εϕ̇2

)
(4.22)

≃ 1

3M2
P

(
εϕ̇2

2
+ V (ϕ) +

3κεϕ̇4

2M2
P

)
(4.23)

where weff = Ptot/ρtot ≃ Pϕ/ρϕ. We assumed here that the scalar field is dominant.

Differentiating Eq. (4.23) with respect to time we obtain slow-rolling of Ḣ,
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2HḢ ≈ 1

3M2
P

(
εϕ̇ϕ̈+ V,ϕϕ̇+

6κεϕ̇3ϕ̈

M2
P

)

Ḣ ≈ 1

6HM2
P

(
εϕ̇ϕ̈+ V,ϕϕ̇+

6κεϕ̇3ϕ̈

M2
P

)
. (4.24)

Eq. (4.24) can be transformed to Eq. (4.20) by substituting Klein-Godon equation

Eq. (4.16) into ϕ̈ approximately.

The acceleration, which is defined by ä/a ≡ Ḣ + H2, is found from Eq.

(4.22) and Eq. (4.20),

ä

a
≃ − εϕ̇2

2M2
P

+
3κεϕ̇3ϕ̈

4HM4
P

− 3εκϕ̇4

4M4
P

− κϕ̇3V,ϕ
4HM4

P

+
εϕ̇2

6M2
P

+
V (ϕ)

3M2
P

+
3κεϕ̇4

6M4
P

≃ −εϕ̇2

3M2
P

+
3κεϕ̇3ϕ̈

4HM4
P

− κεϕ̇4

4M4
P

− κϕ̇3V,ϕ
4HM4

P

+
V (ϕ)

3M2
P

≃ −εϕ̇2

3M2
P

(
1 +

3κϕ̇2

4M2
P

)
+
V (ϕ)

3M2
P

+
3κεϕ̇3

4HM4
P

(
ϕ̈− V,ϕ

3ε

)
. (4.25)

Substituting Eq. (4.18) in Eq. (4.25),

ä

a
≃ −εϕ̇2

3M2
P

+
V (ϕ)

3M2
P

+
3κεϕ̇3

4HM4
P

[(
−V,ϕ −3Hϕ̇ε

ε− 15κH2

2

)
− V,ϕ

3ε

]

≃ −εϕ̇2

3M2
P

+
V (ϕ)

3M2
P

+
κϕ̇3V,ϕ
4HM4

P

[(
−3ε− 9Hε2ϕ̇/V,ϕ

ε− 15κH2

2

)
− 1

]

≃ −εϕ̇2

3M2
P

+
V (ϕ)

3M2
P

+
κϕ̇3V,ϕ
4HM4

P

(
−3ε− 9Hε2ϕ̇/V,ϕ−ε+ 15κH2

2

ε− 15κH2

2

)

≃ −εϕ̇2

3M2
P

+
V (ϕ)

3M2
P

− κϕ̇3V,ϕ
4HM4

P

(
4ε+ 9Hε2ϕ̇/V,ϕ−15κH2

2

ε− 15κH2

2

)

≃ −εϕ̇2

3M2
P

+
V (ϕ)

3M2
P

− κϕ̇3V,ϕ
4HM4

P

(
4ε− 15κH2

2

ε− 15κH2

2

)
, (4.26)

the ϕ̇4 terms can be neglected in slow-roll regime where non-coupling part is (−εϕ̇2+
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V )/3M2
P. Friedmann equation,Eq. (4.23), is substituted to Eq. (4.26)

ä

a
≃ −εϕ̇2

3M2
P

+
V (ϕ)

3M2
P

− κϕ̇3V,ϕ
4HM4

P

4ε−
15κ

(
εϕ̇2

6M2
P

+ 1

3M2
P

V (ϕ)+κεϕ̇4

2M4
P

)
2

ε−
15κ

(
εϕ̇2

6M2
P

+ 1

3M2
P

V (ϕ)+κεϕ̇4

2M4
P

)
2

 (4.27)

Considering chaotic inflation potential V (ϕ) = V0ϕ
n which n = 2 and in the range

|κ| ≪ |M2
P/V |. It should be of sub-Plankian regime[25] that allows binomial ap-

proximation, therefore

Ḣ +H2 ≃ −εϕ̇2

3M2
P

+
V (ϕ)

3M2
P

− κϕ̇3V,ϕ
4HM4

P

(
4ε− 15κH2

2

)(
ε+

15κH2

2

)

≃ −εϕ̇2

3M2
P

+
V (ϕ)

3M2
P

− κϕ̇3V,ϕ

4

(√
V (ϕ)

√
3MP

)
M4

P

4ε− 15κ
(

V (ϕ)

3M2
P

)
2

ε+ 15κ
(

V (ϕ)

3M2
P

)
2


≃ −εϕ̇2

3M2
P

+
V (ϕ)

3M2
P

−
√
3κϕ̇3V,ϕ

4
√
V (ϕ)M3

P

(
4ε− 5κV (ϕ)

2M2
P

)(
ε+

5κV (ϕ)

2M2
P

)
≃ −εϕ̇2

3M2
P

+
V (ϕ)

3M2
P

−
√
3κϕ̇3V,ϕ

4
√
V (ϕ)M3

P

(
4ε2 − 5κεV (ϕ)

2M2
P

+
10κεV (ϕ)

M2
P

− 25κ2ε2V (ϕ)2

4M4
P

)

≃ −εϕ̇2

3M2
P

+
V (ϕ)

3M2
P

−
√
3κϕ̇3V,ϕ

4
√
V (ϕ)M3

P

4ε2 +
15κεV (ϕ)

2M2
P

−
��������*≃ 0
25κ2ε2V (ϕ)2

4M4
P


≃ −εϕ̇2

3M2
P

+
V (ϕ)

3M2
P

−
√
3κϕ̇3V,ϕ√
V (ϕ)M3

P

(
1 +

15κεV (ϕ)

8M2
P

)
. (4.28)

The acceleration condition reads, ä/a > 0 and

−εϕ̇2

3M2
P

+
V (ϕ)

3M2
P

−
√
3κϕ̇3V,ϕ√
V (ϕ)M3

P

(
1 +

15κεV (ϕ)

8M2
P

)
> 0. (4.29)

The condition is computed where acceleration expansion of universe is, for chaotic

inflation potential is applied, how much magnitude of kinetic energy of scalar field

are the expansion.

εϕ̇2

3M2
P

<
V (ϕ)

3M2
P

−
√
3κϕ̇3V,ϕ√
V (ϕ)M3

P

(
1 +

15κεV (ϕ)

8M2
P

)
εϕ̇2

3M2
P

<
V (ϕ)

3M2
P

[
1− 3

√
3κϕ̇3V,ϕ

V (ϕ)
√
V (ϕ)MP

(
1 +

15κεV (ϕ)

8M2
P

)]

εϕ̇2 < V (ϕ)

[
1− 3

√
3κ

MP

(
V,ϕ

V (ϕ)
√
V (ϕ)

)
ϕ̇3

(
1 +

15κεV (ϕ)

8M2
P

)]
(4.30)
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The Eq. (4.18) is approximated to ϕ̇ ≈ −V,ϕ /(3Hε) by very late-time, ϕ̈ ≈

0, and H ≈
√
V /

√
3MP such that

ϕ̇ ≈ −V,ϕMP√
3V ε

,

therefore

εϕ̇2 < V (ϕ)

1− 3
√
3κ

MP

(
V,ϕ

V (ϕ)
√
V (ϕ)

)(
− MPV,ϕ√

3
√
V (ϕ)ε

)3(
1 +

15κεV (ϕ)

8M2
P

)
εϕ̇2 < V (ϕ)

[
1 +

κM2
P

ε

(
V,4ϕ
V (ϕ)3

)(
1 +

15κεV (ϕ)

8M2
P

)]
εϕ̇2 < V (ϕ)

[
1 +

κM2
P

ε

(√
2ϵV,GR

3

M3
P

)
V,ϕ

(
1 +

15κεV (ϕ)

8M2
P

)]

εϕ̇2 < V (ϕ)

[
1 +

κM2
P

ε

(√
2ϵV,GR

3

M3
P

)
V,ϕ

(
1 +

15κεV (ϕ)

8M2
P

)]

εϕ̇2 < V (ϕ)

[
1 +

κ

εMP

√
2ϵV,GR

3
V,ϕ

(
1 +

15κεV (ϕ)

8M2
P

)]
. (4.31)

ϵV,GR ≡ M2
P(V,ϕ /V )2/2 is slow-roll parameter in which chaotic inflation potential,

V (ϕ) = V0ϕ
2, is considered so they gives

ϵV,GR =
M2

P

2

(
V,ϕ
V

)2

=
M2

P

2

(
2V0ϕ

V0ϕ2

)2

=
2M2

P

ϕ2
. (4.32)

The acceleration condition is hence,

εϕ̇2 < V0ϕ
2

1 + κ

εMP

√
2

(
2M2

P

ϕ2

)3

(2V0ϕ)

(
1 +

15κεV0ϕ
2

8M2
P

)
εϕ̇2 < V0ϕ

2

[
1 +

κ

εMP

(
2MP

ϕ

)3

(2V0ϕ)

(
1 +

15κεV0ϕ
2

8M2
P

)]

εϕ̇2 < V0ϕ
2

[
1 +

κ

ε

(
8M2

P

ϕ2

)
(2V0)

(
1 +

15κεV0ϕ
2

8M2
P

)]
εϕ̇2 < V0ϕ

2

[
1 +

(
16V0κM

2
P

εϕ2

)
+ 30κ2V 2

0

]
. (4.33)
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Equations of motion of the model in metric and Palatini formalism are

applied in slow-roll regime that is derived by [24, 25]. Ḣ are derived in slow-roll

regime to use in acceleration condition ä/a ≡ Ḣ + H2. We show mathematical

representations of these two conditions ,Eq. (4.15) and Eq. (4.33), where power

law chaotic potential ,V (ϕ) = V0ϕ
2, is applied to the conditions.



CHAPTER V

DYNAMICAL PHASE PORTRAITS OF NMDC MODEL

5.1 Acceleration region

The condition for accelerating expansion of standard general relativity is

εϕ̇2 < V0ϕ
2. (5.1)

In NMDC model, the acceleration conditions are modified in Section. (4.1)

and Section. (4.2) with slow-roll approximation.

5.1.1 Metric formalism case of the NMDC model

Acceleration condition of NMDC in metric formalism is expressed by Eq.(4.15)

ϕ̇2 < V0ϕ
2

1−
 4κV0

MP

(
ε− κV0ϕ2

M2
P

)
/[

ε− 3κV0ϕ
2

M2
P

]
.

Let κ < 0, acceleration occurs for kinetic energy of scalar field that is considered

needs to be less than potential part. In metric formalism case, acceleration can be

attained easier than GR.

5.1.2 Palatini formalsim case of the NMDC model

For NMDC in Palatini formalism, there is Eq.(4.33)

εϕ̇2 < V0ϕ
2

[
1 +

(
16V0κM

2
P

εϕ2

)]
.

The acceleration is harder to be achieved since the field must move even slower

than GR.
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5.2 Autonomous system

Autonomous system is differential equation system which do not explicitly depend

on time. Suppose that there exist n differential equations in a system.

dx1

dt
= ẋ1 = f1(x1, x2, x3, ..., xn)

dx2

dt
= ẋ2 = f2(x1, x2, x3, ..., xn)

dx3

dt
= ẋ3 = f3(x1, x2, x3, ..., xn)

...
...

...

dxn

dt
= ẋn = fn(x1, x2, x3, ..., xn),

where dx1/dt = ẋ1, dx2/dt = ẋ2, dx3/dt = ẋ3..., dxn/dt = ẋn are time derivative

of variable x and f1(x1, x2, x3, ..., xn), ..., fn(x1, x2, x3, ..., xn) are flow or velocity

function of x that are not explicitly time-dependent. Therefore dynamical system

can be given in an autonomous form [27, 28].

5.3 Second-order differential equation

In some case, a second-order differential equation, Eq. (5.2) there exits derivative

of the flow function. One can introduce new variable such that the second-order

differential equation can be reduced to first-order differential equation,

ẍ = f(x, ẋ). (5.2)

In doing this, we propose new variable y that is defined by

y ≡ ẋ. (5.3)
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From Eq. (5.2) and Eq. (5.3), autonomous equations are

ẋ = y (5.4)

ẏ = f(x, y). (5.5)

The differential equation system of Eq. (5.4) and Eq. (5.5) is called two dimensional

closed autonomous system.

5.4 NMDC to gravity of scalar field autonomous and phase portrait

The autonomous systems are combination of the Klein-Gordon and Friedmann

equations in slow-roll regime. Three cases are GR, NMDC model in metric and

Palatini formalisms. We approximated Hubble variable to H =
√
V√

3MP
so that

dimensions of equation can be reduced to two dimensions.

5.4.1 Phase portrait and acceleration region of scalar field in GR limit

(κ = 0)

When κ = 0 is set, the GR limit is achieved from both metric and Palatini

cases,

ϕ̈ =
−V,ϕ −3Hϕ̇ε

ε
. (5.6)

Define ϕ̇ ≡ ψ, together with Eq. (5.6), the system is of,

ϕ̇ = ψ

ψ̇ = −V,ϕ −3Hψ,

where we set ε = 1 (for canonical scalar field). Phase portrait of this autonomous

system and acceleration condition Eq. (5.1) of GR case are shown in Fig. 1
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Figure 1: Phase portrait with acceleration region of standard general

relativity case for canonical field (ε = 1), m = 0.8 and MP = 1.0

5.4.2 Phase portrait of NMDC model in metric formalism

Equation of motion of NMDC model in metric formalism is Eq. (4.2) but

it is second-order differential equation as,

ϕ̈ = −V,ϕ−3Hϕ̇(ε− 3κH2)

(ε− 3κH2)
. (5.7)

New variable is introduced by ϕ̇ = ψ as same as GR case hence

ϕ̇ = ψ

ψ̇ = −V,ϕ −3Hψ(ε− 3κH2)

ε− 3κH2
,

phase portrait of this system is shown as well as the acceleration region in Fig. 2.
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Figure 2: Phase portrait with acceleration region of NMDC to gravity

in metric formalism by setting κ = 0.1, m = 0.8 and MP = 1.0

5.4.3 Phase portrait of NMDC model in Palatini formalism

NMDC in Palatini formalism, autonomous system is derived from equation

of motion Eq. (4.18)

ϕ̈ ≃ −V,ϕ −3Hϕ̇ε(
ε− 15κH2

2

)
hence

ϕ̇ = ψ

ψ̇ = −−V,ϕ −3Hψε(
ε− 15κH2

2

) ,
and phase portrait is shown in Fig. 3.
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Figure 3: Phase portrait with acceleration region of NMDC to gravity

in Palatini formalism by setting κ = 0.3, m = 0.8 and MP = 1.0



CHAPTER VI

CONCLUSIONS

In Non-Minimal derivative coupling (NMDC) to gravity model, we study dynamical

behavior of canonical scalar field which the derivative term is coupling to Einstein

tensor in special case as κ1Rϕ,µϕ
,ν and κ2R

µνϕ,µϕ,ν where κ ≡ κ2 = −2κ1. In

flat FLRW universe, quasi-de Sitter phase can occur when κ > 0 and there is

initial singularity for κ < 0 at the inflation age. In Palatini formalism, Ricci scalar

and Ricci tensor are function of dynamical connection field (Γ) hence the Einstein

tensor is a function of connection field, (G̃µν(Γ)).

Cosmological equations of NMDC model are derived and approximated

in slow-roll condition both in metric and Palatini formalism [25]. We derived

acceleration conditions of NMDC-Palatini model and see that the accelerations can

be increased for κ > 0 Eq. (4.33) at inflation. For power law potential of chaotic

inflation, V ∝ ϕ2, we have presented the slow-roll autonomous systems and phase

portraits of the NMDC model both in metric and Palatini formalism with slow-roll

regime in 2 dimensional system. In NMDC-metric model, comparison between the

NMDC model and GR show that NMDC effect enlarges the acceleration at large

field. However NMDC-Palatini model affects to enhance acceleration at small field

in comparison with GR case, there are new saddle point in phase portrait. Although

κ > 0 of NMDC model can enhance acceleration at inflation, the model allows

superluminal sound speed of scalar field traveling. Future work should change the

potential and κ < 0 to avoid superluminal traveling of scalar field.



REFERENCES



REFERENCES

[1] Riess, A. G., Filippenko, A. V., Challis, P., Clocchiatti, A., Diercks, A., Gar-

navich, P. M., ..., Kirshner, R. P., et al. (1998). Observational evidence

from supernovae for an accelerating universe and a cosmological con-

stant. The Astronomical Journal, 116 (3), 1009.

[2] Perlmutter, S., Aldering, G., Della Valle, M., Deustua, S., Ellis, R. S., Fabbro,

S., ..., Hook, I. M., et al. (1998). Discovery of a supernova explosion at

half the age of the universe. Nature, 391 (6662), 51–54.

[3] Perlmutter, S., Aldering, G., Goldhaber, G., Knop, R. A., Nugent, P., Castro,

P. G., ..., Groom, D. E., et al. (1999). Measurements of ω and λ from

42 high-redshift supernovae. The Astrophysical Journal, 517 (2), 565.

[4] Komatsu, E., Smith, K. M., Dunkley, J., Bennett, C. L., Gold, B., Hinshaw, G.,

..., Page, L., et al. (2011). Seven-year wilkinson microwave anisotropy

probe (WMAP*) observations: cosmological interpretation. The Astro-

physical Journal Supplement Series, 192 (2), 18.

[5] Tegmark, M., Strauss, M. A., Blanton, M. R., Abazajian, K., Dodelson, S.,

Sandvik, H., ..., Bahcall, N. A., et al. (2004). Cosmological parameters

from sdss and wmap. Physical Review D, 69 (10), 103501.

[6] Guth, A. H. (1981). The Inflationary Universe: A Possible Solution to the

Horizon and Flatness Problems. Physical Review D, 23, 347–356.

[7] Ratra, B. & Peebles, P. J. E. (1988). Cosmological consequences of a rolling

homogeneous scalar field. Physical Review D, 37 (12), 3406.

[8] Chiba, T., Okabe, T., & Yamaguchi, M. (2000). Kinetically driven quintessence.

Physical Review D, 62 (2), 023511.



30

[9] De Felice, A., & Tsujikawa, S. (2010). f(R) Theories. Living Reviews in Rela-

tivity, 13 (1), 3.

[10] Copeland, E. J., Sami, M., & Tsujikawa, S. (2006). Dynamics of dark energy.

International Journal of Modern Physics D, 15 (11), 1753–1935.

[11] Nojiri, S., & Odintsov, S. D. (2011). Unified cosmic history in modified gravity:

from f (R) theory to lorentz non-invariant models. Physics Reports,

505 (2), 59–144.

[12] Brans, C., & Dicke, R. H. (1961) Mach’s principle and a relativistic theory of

gravitation. Physical Review, 124 (3), 925.

[13] Horndeski, G. W. (1974). Second-order scalar-tensor field equations in a four-

dimensional space. International Journal of Theoretical Physics, 10 (6),

363–384.

[14] Capozziello, S., & Lambiase, G. (1999). Nonminimal derivative coupling and

the recovering of cosmological constant. General Relativity and Gravi-

tation, 31 (7), 1005–1014.

[15] Liu, H., & Tseytlin, A. A. (1998). D= 4 super yang-mills, d= 5 gauged super-

gravity and d= 4 conformal supergravity. Nuclear Physics B, 533 (1-3),

88–108.

[16] Nojiri, S., & Odintsov, S. D. (1998). Conformal anomaly for dilaton coupled

theories from AdS/CFT correspondence. Physics Letters B, 444 (1-2),

92–97.

[17] Granda, L. N., & Cardona, W. (2010). General non-minimal kinetic coupling

to gravity. Journal of Cosmology and Astroparticle Physics, 2010 (07),

021.



31

[18] Sushkov, S. V. (2009). Exact cosmological solutions with nonminimal deriva-

tive coupling. Physical Review D, 80 (10), 103505.

[19] Saridakis, E. N., & Sushkov, S. V. (2010). Quintessence and phantom cosmol-

ogy with nonminimal derivative coupling. Physical Review D, 81 (8),

083510.

[20] Germani, C., & Kehagias, A. (2010). New model of inflation with nonminimal

derivative coupling of standard model higgs boson to gravity. Physical

review letters, 105 (1), 011302.

[21] Sushkov, S. V. (2012). Realistic cosmological scenario with nonminimal kinetic

coupling. Physical Review D, 85 (12), 123520.

[22] Tsujikawa, S. (2012). Observational tests of inflation with a field derivative

coupling to gravity. Physical Review D, 85 (8), 083518.

[23] Sadjadi, H. M. (2011). Super-acceleration in a nonminimal derivative coupling

model. Physical Review D, 83 (10), 107301.

[24] Gumjudpai, B., & Rangdee, P. (2015). Non-minimal derivative coupling grav-

ity in cosmology. General Relativity and Gravitation, 47 (11), 140.

[25] Kaewkhao, N., & Gumjudpai, B. (2018). Cosmology of non-minimal deriva-

tive coupling to gravity in palatini formalism and its chaotic inflation.

Physics of the Dark Universe, 20, 20 – 27.

[26] Bassett, B. A., Tsujikawa, S., & Wands, D. (2006). Inflation dynamics and

reheating. Reviews of Modern Physics, 78 (2), 537.

[27] Hirsch, M. W., Smale, S., & Devaney, R. L. (2012). Differential equations,

dynamical systems, and an introduction to chaos. Cambridge: Academic

press.



32

[28] Jordan, D. W., & Smith, P. (1999). Nonlinear ordinary differential equations:

an introduction to dynamical systems, volume 2. Oxford: Oxford Uni-

versity Press.



BIOGRAPHY



BIOGRAPHY

Name-Surname Somphoach Saichaemchan

Date of Birth May 19, 1999

Place of Birth Bangkok Province, Thailand

Address 108/1 Moo 5 Tambon Huaypai, Amphoe

Saweangha, Angtong Province, Thailand 14150

Education Background

2014 B.S. (Physics), University of Phayao, Phayao,

Thailand

Publications

Saichaemchan, S., & Gumjudpai, B., (2017). Non-minimal derivative coupling

in Palatini cosmology: acceleration in chaotic inflation potential.

Journal of Physics: Conference Series, 901 (1), 012010.


	[0.5in][r]I Introduction
	 Background and motivation
	 Objectives
	 Framework
	 Unit and notation

	[0.5in][r]II Standard Cosmology
	 Cosmological principle
	 Hubble's law expansion
	 Cosmological equations
	 Inflation

	[0.5in][r]III Non-Minimal Derivative Coupling with scalar field in Cosmology
	 Non-Minimal Derivative Coupling to gravity
	 NMDC-Palatini action
	 Field equations of slow-roll NMDC in Palatini formalism

	[0.5in][r]IV Acceleration condition
	 Acceleration condition of NMDC in metric formalism
	 Acceleration condition of NMDC in Palatini formalism

	[0.5in][r]V Dynamical phase portraits of NMDC model
	 Acceleration region
	 Autonomous system
	 Second-order differential equation
	 NMDC to gravity of scalar field autonomous and phase portrait

	[0.5in][r]VI Conclusions
	REFERENCES
	BIOGRAPHY

