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ABSTRACT

In this thesis, we study some features of the non-gaussianity in the multi-

field inflationary model with the curvature in the field space. Using the ∆N formal-

ism, we compute bispectrum and also non-gaussianity parameter in the squeezed

limit. For this inflationary model, we have found that the curvature in the field

space can affect both the shape and amplitude of the non-gaussianity parameter.

The amplitude of the backward non-gaussianity parameter can be enhanced by

the magnitude of the curvature in the field space. Furthermore, shape of the non-

gaussianity parameter can be largely effected by the curvature in field space for

some ranges of parameters. Hence, the future observations of the squeezed bis-

pectrum can put tight constrain on the curvature in the field space of multi-field

inflationary models.



CHAPTER I

INTRODUCTIONS

1.1 Background and motivation

Looking as a perspective, nowadays, our universe is very smooth globally,

i.e. homogeneous and isotropic on the scales larger than a few hundred mega-

parsecs. However, on smaller scales, some inhomogeneities and anisotropies, for

example, the solar system, the galactic structures, etc, are observed. In the stan-

dard cosmology, the non-smoothness in the observable universe is a consequence of

the small inhomogeneity and anisotropy in the early universe which can be viewed

as perturbations around the smoothness. According to the Hubble law, the present

universe is expanding. Inversely, as the further and further time away from the

present, the universe in the history has to be smaller and smaller than the size

observed nowadays. Based on this idea, some interesting troubles come out. Be-

cause, to obtain the homogeneous and isotropic universe as observed today, we need

some mechanisms for providing suitable initial conditions. Even if one computes

the dynamics of the universe by adding up every recognized medium, i.e. matter

and radiation, into the Einstein field equation, it is not enough to explain why the

observed universe is spatially flat and why the observed universe homogeneous as

well as isotropic on large scales. these two problems are called, respectively, flat-

ness and horizon problems implying the insolvency of the hot big bang model. To

solved these problems, inflation, the epoch in which the universe rapidly expand

with the acceleration, is proposed. Not only solving these two problems, but inho-



mogeneities and anisotropies observed at the present can be explained as an effect

of the quantum fluctuation of the inflaton field. The brief scenario is that, when

the wavelength becomes longer than the Hubble radius, the quantum fluctuation

of the inflaton will induce the classical perturbations, e.g. metric perturbations

and density perturbations, in the universe on large scales during inflation. The

classical perturbations will then be the seed of inhomogeneities and anisotropies in

the late-time universe when its wavelength is again smaller than the Hubble radius

after reheating.

The data from the observations indicates that the hot big bang model

with the inflation is the most reliable model at this moment. Then, one can study

the primordial universe and its consequent effect on the observable universe via

the quantities being able to indicate physical properties of the whole observable

universe, i.e. smooth and perturbed parts. These quantities are n-point correla-

tion functions which are ensemble averages of the n times product of considered

quantities. In cosmology, the mean average which is ensemble average of a single

quantity can be used to describe the smooth part of the observable universe, while

the variance can be indicated as the two-point correlation function of the pertur-

bations around the mean. In Gaussian case, it is enough to use only just mean and

variance to describe the statistical properties of the perturbations, because every

odd-point correlation functions vanish, and every even-point correlation function

can be written in terms of the two-point correlation function.

By definition, the ensemble average is the average over numerous samples,

however, practically, there is only one universe which we can observe, hence, to mea-



sure the n-point correlation function of any quantities in the observed universe, one

has to use the ergodic hypothesis yielding the equivalence between ensemble and

spatial averages. Since the n-point correlation function in the early universe of any

physical quantity can be related to the present physical quantity. Furthermore,

different inflationary models yield different predicted n-point correlation functions,

then, we can use this fact to constrain inflationary models using the observation.

For instance, so far, one knows that the universe is nearly smooth on large scales,

and the evidence from observations indicates that odd-point correlation functions

used to measure the non-Gaussianity approximately vanish. Hence, via this fact,

one is allowed to rule out some models which yield high non-Gaussianities. Instead

of n-point correlation functions, the prediction from a given inflationary model is

more convenient to be presented in form of spectra which are Fourier transforma-

tions of n-point correlation functions, i.e. power spectrum and bispectrum corre-

spond to two point and three-point correlation functions respectively. Using the

cosmological perturbation theory, one can compute primordial perturbations for a

particular inflationary model, and also one can relate the primordial perturbations

with homogeneity and isotropy observed nowadays. However, in practice, for some

complicated inflationary models, one may meet troubles from solving the evolution

equation of perturbations directly. Fortunately, to avoid the difficulty, one is able

to use an easier method which is called ∆N formalism. Using this method, one

can compute evolutions of perturbations on large scales during inflation without

solving full evolution equations for perturbations, and we will discuss the essential

idea of the ∆N formalism later more in reviews of the literature.



Recently, theoretical investigations on the squeezed bispectrum have got

a lot of attention, because it is possible to obtain more accurate data about the

highly squeezed bispectrum in near future. The squeezed bispectrum is the spec-

trum in the case where one of the wave numbers of the perturbation is smaller than

others. Nevertheless, it is hard to compute the highly squeezed mode of the bispec-

trum for general models, e.g. multi-field inflationary models, using the standard

perturbation theory. However, it is easier to compute it via the ∆N formalism.

The technique for computing the highly squeezed bispectrum for multi-field

inflation via the ∆N have been recently proposed[1, 2]. The investigations in those

works are restricted for the flat field space. For curved field space, the equilateral

bispectrum can also be computed using the ∆N formalism[3]. Definitions of the

squeezed and equilateral bispectrum will be stated clearly in the review of the

literature. In our research, the main target is to compute the squeezed bispectrum

in the inflationary model with arbitrary curvature in the field space.

1.2 Objectives

• To compute the highly squeezed bispectrum for the inflationary model with

the curvature in the field space.

• To investigate the influences of the curvature in the field space on the features

of the squeezed bispectrum.



1.3 Frameworks

• Chapter 1

We mention about introductions including the background and motiva-

tion which give the brief overview of this thesis, objectives, and frame-

works.

• Chapter 2

We will explain why we do need inflation. Also, the dynamics of each

physical variable during inflation as well as some interesting models of

inflation will be introduced in this chapter.

• Chapter 3

The quantities called spectra and a useful method called ∆N formal-

ism which are used both for study the dynamics of the perturbation in

inflatons on large scales during inflation, will be defined.

• Chapter 4

We will show the effects of the curvature in the field space on the non-

gaussianity parameter, and the ways to compute them.

• Chapter 5

The conclusions of this thesis will be mentioned.



CHAPTER II

INFLATION

2.1 Standard big bang model

Based on the cosmological principle which states that the universe is ho-

mogeneous and isotropic on large scales, the metric for the standard big-bang

cosmology takes the form of the Friedmann-Robertson-Walker (FLRW) metric:

gµν = a2(t)


−a−2(t) 0 0 0

0 (1−Kr2)−1 0 0
0 0 r2 0
0 0 0 r2sin2(θ)

 , (2.1)

where coordinates for this metric are t, r, θ, and φ, t is the cosmic time, and a(t) is

the scale factor. The factor K, which can be −1, 0 and 1, is the factor yielding the

open, flat, and closed universes respectively. In the standard big-bang cosmology,

the Friedmann and continuity equations used for describing the cosmic dynamics

are given by, respectively

H2 =
8π

3m2
p

ρ− K

a2(t)
, (2.2)

ρ̇α + 3H(ρα + p) = 0, (2.3)

where a dot denotes the derivative with respect to time, mp ≡ 1/
√
G is the Planck

mass, ρ is the total energy density of the universe, p is the total pressure, and the

subscript α runs over r,m, andd representing radition, matter, and dark energy

respectively. The Hubble parameter is defined as H ≡ ȧ/a. The combination of



2.2 and 2.3 yields the acceleration equation

ä

a
= − 4π

3m2
p

(ρ+ 3p). (2.4)

To quantify the contribution of the matter to dynamics of the universe, the new

quantity called density parameter, Ω, is defined via 2.2 as

Ω = 1 +
K

H2a2
, (2.5)

where Ω ≡ 8πρ/3H2m2
p. Also from the standard big-bang cosmology, dynamics

of the universe is governed by the contained energy and matter. The role of each

matter or energy component on dynamics of the universe can be determined for

the epoch which each of them is dominant. For instance, during the radiation

dominated epoch, main contributions to the total energy density come from the

radition so that ρ on the right-hand side of the equation (2.2) is approximately

the radiation energy density ρr. For radiation, the pressure pr is related to ρr

by pr = ρr/3. Then, the equation (2.3) can be integrated and yield ρr ∝ a−4 .

Substituting the relation between ρr and a into the equation (2.2), one obtains

a ∝ t1/2. Applying the previous method to the matter dominated universe and

using pm = 0 for matter, a ∝ t2/3 is obtained.

2.2 Problems and solutions

2.2.1 Flatness problem

The density parameter can be calculated back to the past until the Planck



era is reached via the relation

Ωp − 1

Ω0 − 1
=
H2

0a
2
0

H2
pa

2
p

(2.6)

where the subscript p indicates the Planck time, and the subscript 0 refers to the

present time. This equation is derived from 2.5. The ratio of scale factors is

computed by using the relation a ∝ T−1 where T is the cosmic temperature or,

equivalently, the temperature of the radiation in the universe. Using Tp ≈ 1019 GeV

and T0 ≈ 2.7 K ' 10−13 GeV , a0/ap =. The ratio of Hubble parameters is

approximated to be H2
0/H

2
p ≈ ρ0/ρp because of the spatially-flat property. Since

energy densities of the universe at the present and the Planck time are 10−47 GeV 4

and 1076 GeV 4 respectively, Ωp − 1 is of the order of 10−59 compared with Ω0 − 1.

In order to have the spatially-flat universe at the present, i.e., Ω−1 ≈ 0, the energy

density of the early universe is almost, very nearly, but not quite 1. Because of this

unnaturally fine-tuned initial value of the energy parameter of the matter to have

the flat universe, this is so called the flatness problem.

2.2.2 Horizon problem

In cosmology, the size of the observed universe at the present is of the

order of the physical horizon scale l0, which can be estimated as l0 ∼ ct0, where c

is the speed of light, and t0 is the present time. Since the physical length scales

expand via the increase of the scale factor, the magnitude of l0 can be computed

backward to an arbitrary time ti as follows: multiplying l0 by the ratio ai/a0, the



magnitude of l0 at ti becomes

li ∼ ct0
ai
a0

. (2.7)

On the other hand, Computing the magnitude of the size of the causal region at ti

by relation l = cti, and comparing this magnitude with li, one obtains

li
l

=
ai
a0

ct0
1

cti
=
ai
a0

t0
ti
≈ ai
a0

Hi

H0

≈ T0

Ti

(
ρi
ρ0

)1/2

. (2.8)

To derive the above equation, we use the following: the condition ρ+ p > 0 which

gives H ∼ t−1, the relation a = T−1
r , and the approximation H2

i /H
2
0 ≈ ρi/ρ0. Let

ti be the Planck time, tp, the above ratio becomes

lp
l
≈ T0

Tp

(
ρp
ρ0

)1/2

. (2.9)

Using the same numerical values as 2.2.1, this ratio finally becomes

lp
l
≈ 1028. (2.10)

This indicates that the size of the observable universe is extreemly larger than

the causal scale in the early universe, leading to the question how our universe

which consists of a numerous causally disconnected regions can be so smooth,

homogeneous and isotropic, on large scales nowadays.

2.2.3 Initial perturbation problem

Even though the observed universe is homogeneous and isotropic on large

scales, there are some inhomogeneities and anisotropies, e.g., galaxies, clusters of

galaxies, and etc., contained inside as well. To explain the existence of these inho-

mogeneities and anisotropies, small initial inhomogeneities and anisotropies in the



early universe are required. We need some mechanisms to generate small initial in-

homogeneities and anisotropies in the early universe. Nevertheless, a natural mech-

anism cannot be constructed in the standard big bang model. One of the problem

is that the big bang can create a huge amout of inhomogeneities and anisotropies

which are inconsistent with the observed inhomogeneities and anisotropies at the

present.

2.2.4 Solutions

In previous sections, disadvantages of the standard big bang model have

been mentioned. Now, let us mention about the way to solve those problems. The

ratio on the right-hand side of 2.9 will be changed as well as aiHi/a0H0, i.e., the

comoving Hubble radius ratio. Nevertheless, the order of this ratio can be replaced

by ȧi/ȧ0 because of the definition of the Hubble parameter. Using the idea of this

epoch with this ratio, not only just more or much more than unity, to have this

ratio in the order of unity is possible, because, applying the acceleration from the

repulsive force, i.e., ä > 0, it is possible to have ȧi/ȧ0 = 1. Obviously, ai and a0 have

been assumed to be used in and out of the special epoch respectively. Physically,

based on this idea, the size of the observed universe at ti and the particle horizon at

ti can be in the same order. It means that the smooth universe can be described as

a small smooth region having rapidly expanded enough in the special epoch before

becoming the observed universe today. In addition, this small region is actually

contained inside the bigger one whose smoothness is ignored since it is larger than

our observed universe by the way. Now, the problem 2.2.2 has been solved. For

the problem 2.2.1, the solution can be recovered as well by recalling the equation



(2.5) and using H = ȧ/a. Hence, we obtain

(Ω− 1)ȧ2 = K. (2.11)

Using the above equation, since K is constant, the dynamic of Ω is contributed by

the dynamic of ȧ. Namely, since ä > 0 in the special epoch, ȧ increases as well.

Then, in this epoch, Ω → 1 while t is increasing. This solves the problem 2.2.1

because, in this epoch, the density parameter is naturally fine tuned by the increas-

ing of ȧ automatically. Finally, for the solution of the problem 2.2.3, the key point

is the decreasing of the comoving Hubble radius, (aH)−1, and the concentration

of radiation and matter of the universe. Because of the concentration of radiation

and matter in this epoch, physics can be described by quantum field theory. Since,

in this epoch, the quantum fluctuation plays an important role, then let us con-

sider its behavior. Considering the wavelength of a fluctuation, λ, inside the small

region whose size is L in the acceleration epoch, it is found that there is no any

substance, e.g., radiation, matter, or etc, occurs because of the propagation of the

fluctuation. Hence, the universe is still completely smooth. Nevertheless, via the

evolution of ȧ, it can be shown that the universe is not always smooth. Since λ ∝ a,

the comoving wavelength, λc = λ/a, remains constant while L ∼ (aH)−1 = ȧ−1

rapidly decreases, then, after the smooth observed universe evolves for a while,

there is a period that λc � L exists. In this period, the fluctuation cannot prop-

agate anymore. On the other hand, it is frozen inside and outside the smooth

observed universe and becomes a classical substance. In addition, there are various

quantities of the substance outside the observable universe, but, for the inside, the

quantity is the same. The quantity of the substance inside evolves via a as the ob-



servable universe evolves. Hence, the observable universe is still smooth. However,

by the way, this period is going to disappear because the universe evolves eventually

into the deceleration epoch, and, finally, the wavelength of the fluctuation is again

smaller than the observable universe. After it gets into the observable universe,

there are so many little different quantities of the classical substance get into the

observable universe as well. By small differences between each quantities of the

classical substance, initial homogeneity and isotropy of the observable universe are

caused. Hence, the existence of the acceleration epoch can yield the solution for

the problem 2.2.3. Since the universe rapidly expands in this epoch, It is called

inflation. However, to have inflation is not enough to have our observable universe

at the present. Because, in inflation, the expansion is supposed to be contributed

by the inflatons as long as possible until the universe reaches the initial state of

our observable universe at the end of inflation. Then, −Ḣ/H is required to be so

smaller than unity to keep the universe expands throughout inflation, and, to stop

inflation at the end to let the deceleration epoch starts, −Ḣ/H is required to be

of the order of unity as well. This condition is called the slow-roll condition, and

−Ḣ/H is defined to be the slow-roll parameter.

2.3 Inflationary dynamics

As discussed in the introduction, one can start with an action which de-

scribes the dynamics of many inflatons,

S =

∫
d4x
√
−g
(

1

2
R + P (X,φI)

)
(2.12)



with

X = −1

2
GIJ∇µφ

I∇µφJ , (2.13)

where 8πG has been set to be 1 for simplicity. Throughout this paper, the sum-

mation convention will be used on the Greek and Latin indices both. The energy-

momentum tensor derived from (2.12), takes the form

T µν = P gµν + P,X GIJ ∇µφI∇νφJ , (2.14)

where P,X is the partial derivative of P with respect to X. The dynamics of the

inflatons are governed by the equation of motion which can be obtained by varying

this action with respect to the inflatons, and it takes the form

∇µ(P,XGIJ∇µφJ)− 1

2
P,X(∇µφ

K)(∇µφL)∂IGKL + P,I = 0 , (2.15)

where GIJ is the field space metric, and P,I ≡ dP/dφI .

2.3.1 Background evolution

In a spatially flat FLRW (Friedmann-Lemaitre-Robertson-Walker) space-

time, the line element takes the form

ds2 = −dt2 + a2δijdx
idxj. (2.16)

The energy-momentum tensor reduces to that of a perfect fluid with energy density

ρ = 2XP,X − P , (2.17)

P the pressure, and the inflatons are homogeneous. Hence, the Friedmann equa-



tions can be written in the form

H2 =
1

3
(2XP,X − P ) , (2.18)

and

Ḣ = −XP,X . (2.19)

Actually, the second equation is the other form of the equation (2.4). The equations

of motion (2.15) for the scalar fields reduce to

φ̈I + ΓIJK φ̇
J φ̇K +

(
3H +

˙P,X
P,X

)
φ̇I − 1

P,X
GIJP,J = 0 , (2.20)

where ΓIJK denotes the Christoffel symbol associated with GIJ . The equation (2.20)

can also be written in the shorter form as

Dtφ̇I +

(
3H +

˙P,X
P,X

)
φ̇I − 1

P,X
GIJP,J = 0 , (2.21)

where

Dtφ̇I ≡ φ̈I + ΓIJK φ̇
J φ̇K . (2.22)

2.3.2 Perturbed evolution

Referring to the theory of linear cosmological perturbations, the scalarly

perturbed FLRW metric is written as

ds2 = a2
(
−(1 + 2A)dη2 + 2∂iBdx

idη + [(1− 2ψ)δij + 2∂ijE] dxidxj
)
, (2.23)

where η ≡
∫
dt/a. Since, in the equation (2.23), there are two gauge degrees of

freedom, these metric perturbations can be combined to yield the gauge-invariant



potentials which are the Bardeen’s potentials, defined by

Φ ≡ A− d

dt

[
a2(Ė −B/a)

]
, (2.24)

Ψ ≡ ψ + a2H(Ė −B/a) . (2.25)

In addition, because of the local covariant property of Einstein theory, the infinitesimal-

coordinate transformation, x̃µ = xµ + ξµ, where xµ four coordinates, and ξµ are

small vectors transforming xµ to x̃µ, can be used to get rid of the excessive variables

via the tensor transformation, i.e.,

g̃µν(x̃
ζ) =

∂xα

∂x̃µ
∂xβ

∂x̃ν
gαβ. (2.26)

Since, there are several coordinates used generally, here, some examples of the

gauge and its dynamical variables are shown. For the conformal Newtonian gauge,

An = A−H(E ′ −B)− E ′′ +B′, ψn = ψ +H(E ′ −B), (2.27)

where ′ denotes the derivative with respect to η, and H ≡ a′/a, and the subscript,

n, denotes that of the conformal Newtonian gauge, but none of any subscript stands

for that of an arbitrary gauge. For the uniform curvature gauge,

Ac = A+ ψ +

(
ψ

H

)′
, Bc = B − ψ

H
− E ′, (2.28)

where the subscript, c, denotes that of the uniform curvature gauge. For the

uniform density gauge,

Ad = A−Hδρ
ρ̄′
−
(
δρ

ρ̄′

)′
, ψd = ψ +Hδρ

ρ̄′
, (2.29)

where δρ and ρ̄ are the perturbed and background energy densities, and the sub-



script, d, denotes that of the uniform density gauge. For the comoving gauge,

Am = A−H(v +B) + v′ +B′, ψm = ψ −H(v +B), (2.30)

where v is a scalar whose gradient becomes the curl-free part of the spatial velocity

of the perfect fluid, and the subscript, m, denotes that of the comoving gauge [7, 8].

The useful gauge choices for study the cosmological perturbations during

inflation are uniform density and comoving gauge The field perturbations at hori-

zon crossing can be computed using the uniform-curvature gauge, and, from the

linear cosmological perturbation theory, the curvature perturbations are conserved

in the comoving gauge, vfluids = 0, on large scales, if there is no any entropy

perturbation. Also, from the linear cosmological perturbation theory, the curva-

ture perturbation in comoving and uniform-density gauges are equivalent on large

scales, i.e. Ψδρ=0 ≈ Ψvfluids=0. Then, the constancy of curvature perturbations

in comoving and uniform-density gauges on large scales is supported by the van-

ishing of entropy perturbations suggested by the observation. Hence, the most

convenient choices of gauge for studying perturbations during inflation are the co-

moving gauges, the uniform-curvature gauge, and the uniform-density gauge. In

fact, to complete the computation for explanation of perturbations via the standard

cosmological perturbation, the initial curvature perturbations at the beginning of

radiation, i.e. after inflation, are needed. Hence, the constancy of curvature per-

turbations on large scales allows us to compute its initial condition during radiation

without considering the evolution at the conjunction between inflation and radi-

ation. To get the evolutions of perturbations, one can obtain the equations of



motion of perturbations by perturbing the equation (2.21) and replacing the back-

ground FLRW metric by the metric 2.23. As mentioned that eventually the gauge

degrees of freedom has to be destroyed, It is convenient to destroy them by using

the uniform curvature gauge. Via the Fourier transformation, we obtain

D2δφak
dt2

+ 3H
Dδφak
dt
−Ra

bcdφ̇
bφ̇cδφdk + q2δφak + V ;a

;bδφ
b
k =

1

a3

D

dt

(
a3

H
φ̇aφ̇b

)
hbcδφ

c
k,

(2.31)

where k is the comoving wavenumber, and Ra
bcd = Γabd,c − Γabc,d + ΓaceΓ

e
db −

ΓadeΓ
e
cb. Under the slow-roll conditions, the equation (2.31) approximately be-

comes

3H
Dδφak
dt
−Ra

bcdφ̇
bφ̇cδφdk + V ;a

;bδφ
b
k = 3φ̇aφ̇bhbcδφ

c
k (2.32)

[5].

2.3.3 Inflationary models

2.3.3.1 Quadratic model.

Here is one of the standard models of the inflaton, called the quadratic

model. The potential of this model takes the form

V (φ) =
1

2
m2
φφ

2, (2.33)

where mφ is the mass of φ, and P = 1
2
∂µφ∂

µφ − V (φ). Applying this potential to

equation (2.12)-(2.22) under the slow-roll conditions, one obtains evolution equa-



tion for the background universe as follows

H2 ' 1

3
V (φ) =

1

6
mφφ

2, (2.34)

φ̇ ' −V,φ
3H

=
2

φ
. (2.35)

Actually, equation (2.34) and (2.35) are inflationary Friedmann and continuity

equations respectively. The slow-roll parameter, ε ≡ −Ḣ/H, can also approxi-

mately take the other form as

ε =
1

2

V,φ
V
. (2.36)

By using this potential, the extra slow-roll parameter can also be defined as

η ≡
∣∣∣∣V, φφV

∣∣∣∣� 1. (2.37)

This new parameter is used to maintain the condition that ε� 1 during inflation.

2.3.3.2 Double quadratic model.

Let us, now, consider the other inflationary model. In stead of having only

one scalar field in the model as the previous, this model is modified to drive the

universe by two scalar fields, φ and χ. For this model, using V (φ, χ) = 1
2
mφφ

2 +

1
2
mχχ

2 , P = X(φ̇, χ̇)− V (φ, χ), and the slow-roll conditions, we can also have the

Friedmann and continuity equations respectively as

H2 ' 1

3
V (φ, χ) =

1

6

(
mφφ

2 +mχχ
2
)
, (2.38)

φ̇ ' −V,φ
V

=
2

φ
, (2.39)

χ̇ ' −V,χ
V

=
2

χ
. (2.40)



For the slow-roll parameters, they both are computed to be ε = εφ + εχ, and

εI =
1

2

V,I
V
, (2.41)

ηI =

∣∣∣∣V,IIV
∣∣∣∣ , (2.42)

where the index, I, runs for φ and χ respectively.



CHAPTER III

SPECTRA OF THE PERTURBATION & ∆N

FORMALISM

3.1 Power spectrum & bispectrum

The theoretical prediction of the cosmological model can be connected to

observational data by using the n-point correlation functions. The n-point correla-

tion function of the quantity ξ in real spaces can be written as 〈
∏n

i=1 ξxi〉 where ξxi

is the value of ξ at the position xi, and 〈2〉 is the ensemble averages of 2. Using

the definition of the Fourier transformations of the two-point correlation function

and the homogeneity and isotropy of statistic, the power spectrum, Pk, is defined

as

〈
ξ̃k1 ξ̃k2

〉
=

∫ ∞
−∞

d3x1d
3x2 exp(−i(k1 · x1 + k2 · x2)) 〈ξx1ξx2〉

=

∫ ∞
−∞

d3x1d
3R exp(−i(k1 + k2) · x1) exp(−ik2 ·R) 〈ξ0ξR〉

= (

∫ ∞
−∞

d3x1 exp(−i(k1 + k2) · x1)(

∫ ∞
−∞

d3R exp(−ik2 ·R) 〈ξ0ξR〉)

= (2π)3δ(3)(k1 + k2)

∫ ∞
−∞

d3R exp(−ik2 ·R) 〈ξ0ξR〉

= (2π)3 δ(3) (k1 + k2)Pk2 (3.1)

where R is the distant between two points, i.e. the magnitude of R. Due to statis-

tical homogeneity and isotropy, one can set x1 in two-point correlation function to

be 0 without lost of generality. In the above equation, we have defined

Pk2 ≡
∫ ∞
−∞

d3R exp(−ik2 ·R) 〈ξ0ξR〉 . (3.2)



Hence, Pk can be transformed back to be 〈ξ0ξR〉 by

〈ξ0ξR〉 = (2π)−3

∫ ∞
−∞

d3keik·RPk = (2π)−3

∫ ∞
0

dωdkk2eik·RPk (3.3)

where k and R is the magnitude of k and R respectively, and ω is the solid angle

around R. From equation (3.3), the dimensionless power spectrum, Pk, can be

defined by setting R = 0 and using
∫
dω = 4π as

Pk ≡ (2π2)−1k3Pk. (3.4)

Likewise, the bispectrum, B, or a spectrum of an arbitrary order, Sn where

n is the order, can be defined as〈
n∏
i=1

ξ(ki)

〉
≡ (2π)3 δ(3)

(
n∑
i=1

ki

)
Sn, (3.5)

hence, by definition, one can see that P = S2 and B = S3. The property of

delta function, δ(3) (
∑n

i=1 ki), confirms that the summation of wave vectors, ki,

have to vanish, i.e. the combination of wave vectors forms a polygon. In the

case of the power spectrum, the configuration of wave vectors is forced to be one

pattern which is the configuration of two opposite vectors with the same magnitude,

i.e. Pk1 = Pk2 . However, in the case of the bispectrum, there are infinite possible

configurations, but important features of non-Gaussianity can be represented by the

following configurations: the first is called equilateral bispectrum with the property

k1 = k2 = k3, the second is the squeezed bispectrum which is k1 = k2 � k3. One

can consider this type as an isosceles.

As it was mentioned, non-Gaussianity of the curvature perturbations can



be investigated by computing the three-point correlation function. For the local

shape, the bispectrum can be computed using the local ansatz, i.e.

Ψx = Gx +
3

5
f localNL (G2

x −
〈
G2
〉
) (3.6)

where Ψx is the curvature perturbations, and Gx is a Gaussian field. For the

Gaussian case, f localNL vanishes, i.e. Ψx = Gx. One is leaded to the fact that, for

the Gaussian curvature perturbations, three-point correlation functions vanish, i.e.

〈Ψx1Ψx2Ψx3〉 = 0. Hence, also for Gaussian curvature perturbations, BΨ(k1, k2, k3)

vanishes. Using the local ansatz and Wick’s theorem, f localNL , which is called the

non-Gaussianity parameter, can be computed as

3

5
f localNL =

BΨ(k1, k2, k3)

2(PΨ(k1)PΨ(k2) + PΨ(k2)PΨ(k3) + PΨ(k3)PΨ(k1))
. (3.7)

It can be seen that f localNL quantifies a size of non-Gaussianity. For squeezed modes,

the above equation can be reduced to

3

5
f localNL '

BΨ(kl, ks)

4PΨ(kl)PΨ(ks)
, ks � kl (3.8)

where k1 ' k2 = ks, k3 = kl and kl and ks denote wave vectors of long and short

wavelengths respectively, so that ks � kl. From the above equation, the coupling

term, PΨ(ks)PΨ(ks), in equation (3.7), is ignored because it is proportional to

k−6
s while others are proportional to k−3

s k−3
l . During inflation, the dimensionless

power spectrum is found to near be scale-invariant. The deviation from being

scale-invariant is characterized by the spectral index, ns, as

ns = 1 +
d log(PΨ)

d log k
. (3.9)



Using the local ansatz with the squeezed mode, i.e. Gx = Gl + Gs(x) where

subscripts, l and s, directly mean long and short wavelengths respectively, the

curvature perturbation can be written as

Ψx = (Gl +Gs(x)) +
3

5
f localNL ((Gl +Gs(x))2 −

〈
(Gl +Gs(x))2

〉
)

= Gl +
3

5
f localNL (G2

l −
〈
G2
l

〉
) +Gs(x) +

3

5
f localNL (G2

s(x) + 2GlGs(x)). (3.10)

Neglecting the second order, curvature perturbations for the short-wavelength

mode, Ψs, is then of the order

Ψs(x) ∼
(

1 +
6

5
f localNL Gl

)
Gs(x). (3.11)

As one can see from the above equation, Gl on the R.H.S shows the modulation of

the long-wavelength on short wavelengths when short wavelengths are crossing the

horizon. This modulation causes the non-Gaussianity in curvature perturbations.

However, the detail about the modulation will be explained further in section (4.2).

3.2 ∆N formalism

To describe the dynamics of the scales factor, one can use numbers of e-

folding , N . By definition, the numbers of e-folding is N ≡ log (a(t2)/a(t1)). From

this definition the numbers of e-folding can also takes the form as N =
∫ t2
t1
dtH.

In uniform-density gauge, δρ = 0, or uniform-curvature gauge, Ψ = 0, in which

vanishing of Eδρ=0 or EΨ=0 is required,

the leftover spatial part of ds2 given in equation (2.23) is a2(t)δij2Ψδρ=0

and a2(t)δij consecutively. This motivates us to describe curvature perturbations



in these two gauges by introducing a new scale factor, ã, which depend on both

spatial coordinates and time coordinate via this definition

ã(x, t) ≡ exp(Ψ(x, t))a(t) ≈ (1 + Ψ(x, t))a(t). (3.12)

Likewise, as the background metric, one can also define a new Hubble parameter,

H̃, as H̃ ≡ ˙̃a/ã. Since Ψ = 0 in the uniform-curvature gauge, one can easily see

that

H̃δρ=0 =
˙̃aδρ=0

ãδρ=0

= H + Ψ̇δρ=0, H̃Ψ=0 =
˙̃aΨ=0

ãΨ=0

= H (3.13)

where H is the background Hubble parameter. Here, one can define the numbers

of e-folding in both to gauges by using the same definition from the background

as Ñ(x, t0, t) ≡ log (ã(x, t)/ã(x, t0)). Because one can independently fix the gauge,

it is possible to choose uniform-curvature and uniform-density gauges at t1 and t2

respectively. Then, one can prove that

∆N = Ñδρ=0(x, t2)−N(t2) = log

(
ã(x, t2)

a(t1)

)
− log

(
a(t2)

a(t1)

)
= Ψδρ=0 (x, t2)

(3.14)

where N(t1, t2) ≡ log(a(t2)/a(t1)). This is the fundamental equation of the ∆N

approach. In practice, the ∆N formalism can be used to compute curvature pertur-

bations via the separate universe approach. The elementary ideas of the separate

universe approach will be shown as follows: on scales larger than the Hubble radius,

the universe can be viewed as many separate universes, i.e. many small separate

disconnected regions which separately evolve as the FLRW universe. The FLRW

universe evolves via the evolution of a(t) while the small region of the universe

on large scales evolves via ã(x, t). However, the evolution of each separate region



depends on the initial value of ã that coincides with the local area of the region.

Using this idea, the inhomogeneity and anisotropy can be viewed as the effect of the

difference between the evolution of each local region. This approach is called the

separate universe approach. During inflation, dynamics of the universe is govern by

the inflaton, φ. For a scalar field inflaton, φ can be split as φ(x, t) = φ̄(t) + δφ(x, t)

where φ(t) is the homogeneous and isotropic background field, and δφ(x, t) are very

small field perturbations. Using the idea of the separate universe, the Friedmann

equation for the local region will take this form

H̃2 =
1

3

(
1

2
φ̇2(x, t) + V (φ(x, t))

)
(3.15)

However, the slow-roll condition during inflation, i.e. φ̇2 � V (φ), forces this equa-

tion to be

H̃ = H̃(φ(x, t)) ≈
√

1

3
V (φ(x, t)). (3.16)

Using the above equation, one can consider the evolution of the universe via φ in

each small region. Applying this idea to the ∆N approach, curvature perturbations,

Ψδρ=0(x, t), become

Ψδρ=0(x, t) = ∆N(φ(x, t)) = ∆N(φ̄(t) + δφ(x, t))

= Ñ(φ̄(t) + δφ(x, t))−N(φ̄(t))

= Nφ̄δφ+
1

2
Nφ̄φ̄δφ

2 +
1

6
Nφ̄φ̄φ̄δφ

3 + · · · (3.17)

where the subscript φ denotes the derivative with respect to φ. Using the last

above equation, the n-point correlation function of curvature perturbations and its

spectrum can be computed if we know δφ in uniform-curvature gauge at horizon



crossing and the evolution of the background without considering the nonlinear

evolution of curvature perturbations, i.e., in order to compute the n-point corre-

lation function of curvature perturbations and its spectrum via the cosmological

perturbation theory, one has to consider the nonlinear evolution of curvature per-

turbations also.



CHAPTER IV

EFFECT OF CURVATURE IN FIELD SPACE ON

SQUEEZED BISPECTRUM

4.1 Standard approach

For the model of multi scalar fields minimally coupling with the physical

curvature, its actions can be written as shown

S =
1

2

∫
d4x
√
−g
(
R +Gab∂µφ

a∂µφb − 2W (φa)
)

(4.1)

where the reduced Planck mass is set to be unity, and φa denote each fields. Because

the field space metric tensor, Gab, is assumed to be none trivial, and the slow roll

conditions is used, the evolution of multi fields can be written as

dφa

dN
= −GabVb

V
. (4.2)

Using this model with the ∆N formalism, i.e. equation (3.17), for the leading

order, the dimensionless power spectrum takes the form as

Pψ =
k3

2π2
|Ψ|2 =

k3

2π2
|Naδφ

aNbδφ
b|2 = NaNbPabδφ = NaN

a

(
H

2π

)2

, (4.3)

where Pabδφ is the dimensionless power spectrum of fields perturbations at horizon

crossing, tc. Similarly, the bispectrum of curvature perturbations can be yielded as

BΨ(k1, k2, k3) =

NaNbNcBδφ(k1, k2, k3) + (NaN
aNcdPδφ(k1)Pδφ(k2) + 2perms) . (4.4)



For the equilateral mode, since the magnitude of each wave vector of the

field perturbation is equal, all field perturbations cross the horizon at the same

time. Therefore, the first term on the R.H.S represents the non-Gaussianity of

field perturbations at horizon crossing. Then, this term is called intrinsic non-

Gaussianity. In the standard cosmological perturbation theory, this term can be

computed from the action of the third order perturbations. Regularly, this term is

proportional to the slow-roll parameter of inflation which is smaller than unity. The

second term is influenced by nonlinear evolutions on large scales. This term can be

computed by the standard cosmological perturbation theory or, alternatively, the

∆N approach.

For the squeezed mode, field perturbations do not cross the horizon at the

same time. Therefore, the first term has to be computed when short wavelengths

perturbations cross the horizon. However, at that time, the longer wavelength had

already evolved on large scales. Its evolution affects the time at which the short

wavelengths exist the horizon leading to the correlation between short and long

wavelengths. In this case, instead of the intrinsic non-Gaussianity, the first term

on the R.H.S represents the correlation between short and long wavelengths. In

order to compute this term, one can use the standard cosmological perturbation

theory or the ∆N approach. From the action of the third order perturbations for

a single field, one can compute the non-Gaussianity parameter of squeezed mode

in term of spectral index as

3

5
fNL =

1− ns
4

(4.5)



which is called the consistency relation. This relation is true for a single field

inflaton only. To avoid the complexity of computing the third order action for

multi fields, the ∆N approach used to compute the non-Gaussianity parameter

for the squeezed mode has been proposed recently[1, 2]. This approach will be

reviewed in the next section.

4.2 New technique to compute the highly squeezed mode

According to the previous section, non-Gaussianity in the squeezed mode

is caused by the correlation between short and long wavelength modes of per-

turbations. Hence, bispectrum for squeezed mode can be viewed as the power

spectrum of short-wavelength mode modulated by the long-wavelength mode, i.e.

〈ΨlΨsΨs〉 ' 〈Ψl 〈ΨsΨs〉〉. Ψl ≡ Ψ(x̃) can be defined from Ψ(x) by averaging Ψ(x)

over the region which is larger than k−1
l using the window function W (kl|x̃ − x|)

as

Ψl ≡ Ψ(x̃) =

∫
d3xW (kl|x̃− x|)Ψ(x). (4.6)

From this definition, one can get

〈ΨlPΨs(ks)〉 =
k3
s

2π2

∫
d3xd3x̃e−iks·x̃W (klx)

〈
Ψ(x)Ψ(− x̃

2
)Ψ(

x̃

2
)

〉
=

k3
s

(2π2)(2π)6

∫
d3xd3x̃d3pd3qei(p·(x+ x̃

2
)+q·x̃−ks·x̃)W (klx)BΨ(p, q, |p + q|)

=
k3
s

(2π2)(2π)3

∫
d3pd3qδ(3)

(p

2
+ q− ks

)
W̃

(
p

kl

)
BΨ(p, q, |p + q|). (4.7)

We choose the Fourier transformation of the window function, W̃ (K) to be the

delta function, W̃ (p/kl) = δ(log p− log kl), for selecting out the mode p = kl in the



above integration. Hence the above equation is reduced to

〈ΨlPΨs〉 '
(kskl)

3

(2π2)2
BΨ(kl, ks, ks) (4.8)

where we have used the approximation that kl � ks. Using the above equation with

equation (3.8), one can show that the local nonlinear parameter of the squeezed

mode is given by

3

5
f localNL (kl, ks) =

〈ΨlPΨs〉
4PΨlPΨs

. (4.9)

Using this relation, one can compute the bispectrum via the ∆N formalism. Let A∗

and B∗ be points in the field space when the long and short-wavelength modes are

crossing the horizon, and B be a point in the field space at which the short wave-

length perturbations cross the horizon without the effect of the long wavelength.

Making an expansion around background field at the point B yields

〈ΨlPΨs|B∗〉 ' 〈ΨlPΨs|B〉+ 〈ΨlPΨ(k),b (φ(B∗)− φ(B))〉

=Na 〈δφalPΨ(k)|B〉︸ ︷︷ ︸
=0

+NaPΨ(k),b
〈
δφal (φ

b
l (B

∗)− φbl (B))
〉

=N(k∗l )aPΨ(k),b

〈
δφal δφ̃

b
l

〉
(4.10)

where the perturbed field, δφ̃bl , describes the shifting from B to B∗, i.e. deviating

from one to another slow-roll path, and P ,a denotes the derivative of P with respect

to the scalar field φa. At leading order, this perturbed field is given by

δφ̃al =φa(φb(A∗) + δφb(A∗))− φa(φb(A∗))

'φa(φb(A∗)) +
∂φaB
∂φb

δφa(A∗)− φa(φb(A∗))

=
∂φaB
∂φb

∣∣∣∣
A∗
δφb(A∗) (4.11)



where we have already used separate universe approach. Hence, finally, the non-

linear parameter becomes

3

5
f localNL (kl, ks) =

〈ΨlPΨs〉
4PΨl |A∗PΨs|B

=
Na|A∗PΨs,b|Bφba|A∗Pδφ|A∗

4PΨl |A∗PΨs|B
. (4.12)

For a single scalar field, the above equation will be reduced to

3

5
f localNL (kl, ks) =

Nφ|A∗PΨs,φ|B ∂
∂φ
φ(B)|A∗Pδφ|A∗

4PΨl |A∗PΨs|B

=
1

4

Nφ|A∗Nφ|B ∂
∂φ
φ(B)|A∗( ∂

∂N
(logPΨs)|B)(Pδφ|A∗)

PΨl |A∗

=
1

4

∂

∂N
logPΨs

∣∣∣∣
B

= − 1

4

∂

∂ log k
logPΨs

∣∣∣∣
B

∂ log k

∂ log a

'1− ns
4

(4.13)

where k = aH, and we have used the same method as we did in equation (4.3) and

equation (3.9). It yields again the consistency relation we have mentioned.

4.3 Squeezed bispectrum in multi-inflaton with curved field space

We now consider the multi-field inflation with the action

S =

∫
d4x
√
−g
[
−1

2
GIJ∂µφ

I∂µφJ −W (φI),

]
, (4.14)

where W (φI) is the potential of inflatons.

In the following consideration, We concentrate on two-inflaton field with

the additive separable potential

W (φ, χ) = U (φ) + V (χ) =
1

2
m2
φφ

2 +
1

2
m2
χχ

2 , (4.15)



where we have set φI ≡ (φ, χ). We choose to work with the metric

GIJ =

(
1 0
0 G(φ)

)
, where G(φ) ≡ λ1 + λ2φ

p . (4.16)

Here, λ1, λ2 and p are the constant parameters.

4.3.1 Background evolution

Varying the action (4.14) with respect to metric tensor of spacetime, and

inserting the FLRW line element from equation (2.16) into the result, we obtain

Friedmann equation which can be written as

H2 ≡
(
ȧ

a

)2

=
2W

6− (φ′)2 −G(φ)(χ′)2
, (4.17)

where a prime denotes derivative with respect to number of e-folding of the back-

ground universe. The evolution equation for the background field can be obtained

by varying the action (4.14) with respect to the field, which yields

φ′′ − 1

2
Gφ(χ′)2 = −W

H2

(
φ′ +

Uφ
W

)
, (4.18)

χ′′ +
Gφ

G
φ′χ′ = −W

H2

(
χ′ +

Vχ
GW

)
, (4.19)

where subscripts φ and χ denote derivative with respect to φ and χ respectively.

At the lowest order in slow roll approximation, Eq. (4.17) gives 3H2 = W , and the

above equations become

φ′ = −Uφ
U
, χ′ = − Vχ

GV
. (4.20)

These equations give the following constrained equation:

∫ φ2

φ1

dφ

G(φ)Uφ(φ)
=

∫ χ2

χ1

dχ

Vχ(χ)
, (4.21)



where (φ1, χ1) and (φ2, χ2) are any points in field space. Substituting the expression

for G(φ) in Eq. (4.16) into the above equation, the relation between the fields φ

and χ along trajectory which passes a point (φ1, χ1) in the field space is

φp =
λ1fφ(φ1) (χ/χ1)rp

1− λ2fφ(φ1) (χ/χ1)rp
, (4.22)

where r ≡ λ1m
2
φ/m

2
χ and

fφ(φ1) ≡ φp1
λ1 + λ2φ

p
1

=
φp1

G(φ1)
. (4.23)

Using Eq. (4.20), the number of e-folding for the background universe between

times t1 and t2 or equivalently between points (φ1, χ1) and (φ2, χ2) in the field

space can be computed as

N ≡
∫ t2

t1

Hdt = −
∫ φ2

φ1

W (φ, χ)

Uφ(φ)
dφ =

∫ φ1

φ2

U(φ)

Uφ(φ)
dφ+

∫ χ1

χ2

G(φ(χ))
V (χ)

Vχ(χ)
dχ .

(4.24)

The above integration cannot be evaluated analytically. Hence, we perform numer-

ical integration by inserting Eq. (4.22) into the above equation and evaluating the

integration from N = 85 to N = 0 at the end of inflation. The results from the

numerical integration are plotted in figure (1). From the plot, we see that φ → 0

at the end of inflation, which follows from Eq. (4.22) that if r � 1, the value of

the field φ at the end of inflation can be extremely smaller than the value at the

initial stage of inflation. From Eq. (4.24), we see that λ1 can enhance the number

of e-folding for a given value of χ, so that the initial value of φ reduces when λ1

increases. Since φ drops towards zero quickly when χ starts to dominate dynamics

of inflation, the parameters λ2 and p have no effect on dynamics of inflation when



the number of e-folding is close to zero.
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Figure 1: Trajectories in the field space for various values of λ1, λ2 and p. Lines 1,
2, 3 and 4 correspond to the cases where (λ1, λ2, p) = (1, 0, 1), (1.5, 0, 1), (1, 0.01, 1),
and (1, 0.01, 2) respectively. In the plot, mφ/mχ = 9, χ =

√
2/λ1 at the end of

inflation and χ = 13 at the initial stage of inflation for all cases while the initial
value of φ is chosen such that the total number of e-folding of inflation is 85.

4.3.2 Squeezed bispectrum

Inserting equation (4.3) into equation (4.12), we get

3

5
f

(s)
NL(NA, NB) =

NI |AGIK(φA)

4(NIN I)|A

(
2NK′KN

K′ +NJ ′NK′G
J ′K′
,K

NIN I
+
W,K

W

)
B

∂ϕJB
∂ϕK

∣∣∣∣
A

.

(4.25)

where a subscript ,K denotes derivative with respect to ϕK . In order to compute f
(s)
NL

for model of interests, we insert the expressions for the potential and metric given in



equation (4.15) and (4.16) into the above equation. We compute the expressions for

NI , NIJ and ∂φJB/∂φ
K |A in appendix (A). Since we are interested in fNL at the end

of inflation at which φ(t = tu)→ 0, we compute f
(s)
NL for the forward formulation by

substituting equation (A.17), (A.18) and (A.26) into equation (4.25) while equation

(A.34) is used instead of equation (A.26) for the backward f
(s)
NL. Plots of f

(s)
NL for

various values of parameters p, λ1, λ2 are shown in figures (2) - (4). For all plots,

we set mφ = 9 × 106 GeV, mφ/mχ = 9, and denote number of e-folding at which

the long wavelength and short wavelength perturbations exist the horizon by NL

and NS respectively. From the plots, we see that the curvature of the field space

can significantly affects both amplitude and shape of f
(s)
NL. The amplitude of the

backward fNL increases and the peak is shifted to larger NL when λ2 and p increase,

while the shape of f sNLz can be largely altered when p = 3. Unlike the change of

the curvature in field space, the increase of λ1 just shift the peaks of fNL.
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Figure 2: Nongaussianity parameter for forward(upper panel) and backward(lower
panel) formulations. Lines 1, 2, 3, 4, 5, and 6 correspond to the cases λ1 =
1, 1.1, 1.2, 1.3, 1.4, and 1.5 respectively. For all lines, λ2 = 0, p = 1.
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Figure 3: Nongaussianity parameter for forward(upper panel) and backward(lower
panel) formulations. Lines 1, 2, 3, 4, 5, and 6 correspond to the cases λ2 =
0, 0.0001, 0.001, 0.01, 0.1, and 1 respectively. For all lines, λ1 = 0, p = 1.
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Figure 4: Nongaussianity parameter for forward(upper panel) and backward(lower
panel) formulations. Lines 1, 2, 3, 4, 5, and 6 correspond to the cases that p = 1, 2,
and 3 respectively. For all lines, λ1 = 1, λ2 = 0.01.



CHAPTER V

CONCLUSIONS

In this thesis, the effects of curvature in field space of multi fields inflation-

ary models on the squeezed bispectrum are investigated. Using ∆N formalism, we

compute squeezed bispectrum both in the forward and backward cases. We have

found that the effects of curvature in field space on the squeezed bispectrum can

be quantified by the slopes of the field-space metric and the differences of num-

ber of e-folding between flat and curved models, arising from moving between two

specific points in field space. According to our analysis, The number of e-folding

for moving between two particular points in field space of curved field-space model

is less than that of flat field-space model. From our concrete form of the metric

in field space, amplitudes and shapes of fNL can be affected by the curvature in

field space. When λ2 and p increase, amplitudes of backward fNL increase, while

amplitudes of forward fNL decrease, and peaks of both cases shift to larger NL.

Furthermore, shapes of both forward and backward fNL are largely modified when

p = 3. This indicates that future detections of squeezed bispectrum can put tight

constrains on the curvature in field space of multi-field inflationary model.



APPENDIX



APPENDIX A NI , NIJ AND ∂ϕJ
B/∂ϕ

K
A

A.1 NI

In order to compute NI , we set t1 and t2 in Eq. (4.24) to be times at

which the specific perturbations modes are on the spatially flat and uniform density

hypersurfaces respectively. Thus we have

N =

∫ φ∗

φu

U(φ)

Uφ(φ)
dφ+

∫ χ∗

χu

G(φ(χ))
V (χ)

Vχ(χ)
dχ , (A.1)

where subscripts ∗ and u denote evaluation at the time when perturbations are on

the spatially flat and uniform density hypersurfaces respectively. Differentiating

the above equation with respect to φ∗ and χ∗, we get

Nφ ≡
∂N

∂φ∗
=

U∗
Uφ∗
− ∂φu
∂φ∗

Uu
Uφu
− ∂χu
∂φ∗

G(φ∗)
Vu
Vχu

+

∫ χ∗

χu

∂G(φ(χ))

∂φ∗

V (χ)

Vχ(χ)
dχ , (A.2)

Nχ ≡
∂N

∂χ∗
= G(φ∗)

V∗
Vχ∗
− ∂χu
∂χ∗

G(φu)
Vu
Vχu
− ∂φu
∂χ∗

Uu
Uφu

+

∫ χ∗

χu

∂G(φ(χ))

∂χ∗

V (χ)

Vχ(χ)
dχ .

(A.3)

The derivative of fields at t = tu with respect to fields at t = t∗ can be computed

from Eq. (4.21) and the condition δρ = 0 on uniform density hypersurfaces. Setting

(φ1, χ1) and (φ2, χ2) in Eq. (4.21) to be (φ∗, χ∗) and (φu, χu) respectively, and

differentiating the result with respect to φ∗ and χ∗, we get

0 =
1

Uφ∗G(φ∗)
− ∂φu
∂φ∗

1

UφuG(φu)
+
∂χu
∂φ∗

1

Vχu
(A.4)

0 =
∂φu
∂χ∗

1

UφuG(φu)
+

1

Vχ∗
− ∂χu
∂χ∗

1

Vχu
. (A.5)

On the uniform density hypersurfaces, there are no perturbations in energy density

δρ = 0, so that if the slow roll approximation is assumed, we have δρ ' δW =



Uφuδφ+ Uχuδχ and therefore

0 = Uφu
∂φu
∂φ∗

+ Vχu
∂χu
∂φ∗

,

0 = Uφu
∂φu
∂χ∗

+ Vχu
∂χu
∂χ∗

. (A.6)

Solving the above four equations, we obtain

∂φu
∂φ∗

=
G (φu)UφuV

2
χu

G (φ∗)Uφ∗V
2
χu +G (φ∗)Uφ∗G (φu)U2

φu

, (A.7)

∂χu
∂φ∗

= −
G (φu)U

2
φu
Vχu

G (φ∗)Uφ∗V
2
χu +G (φ∗)Uφ∗G (φu)U2

φu

, (A.8)

∂φu
∂χ∗

= −
G (φu)UφuV

2
χu

Vχ∗G (φu)U2
φu

+ Vχ∗V
2
χu

, (A.9)

∂χu
∂χ∗

=
G (φu)U

2
φu
Vχu

Vχ∗G (φu)U2
φu

+ Vχ∗V
2
χu

. (A.10)

In order to evaluate the integration terms in Eqs. (A.2) and (A.3), we express the

field space metric G in terms of χ by inserting Eq. (4.22) into Eq. (4.16) as

G(φ(χ)) =
λ1

1− λ2fφ(φ1)(χ/χ1)rp
. (A.11)

Setting (φ1, χ1) = (φ∗, χ∗), and differentiating this equation with respect to φ∗ and

χ∗ , we respectively get

∂G(φ(χ))

∂φ∗
=

∂fφ(φ∗)

∂φ∗

λ1λ2fφ(φ∗)(χ/χ∗)
rp

(1− λ2fφ(φ∗)(χ/χ∗)rp)
2 =

1

λ1fφ(φ∗)

∂fφ(φ∗)

∂φ∗
G(φ)φp ,(A.12)

∂G(φ(χ))

∂χ∗
= − 1

χ∗

λ1rpλ2fφ(φ∗)(χ/χ∗)
rp

(1− λ2fφ(φ∗)(χ/χ∗)rp)
2 = −rpλ2

λ1χ∗
G(φ)φp , (A.13)

Inserting the above relation into the integration terms in Eqs. (A.2) and (A.3) and

performing suitable integration by parts, we can write the parts that cannot be

integrated analytically in terms of the number of e-folding given Eq. (A.1) and



obtain

Nφ =
G∗U∗V

2
χu +G∗U∗GuU

2
φu
−GuUuV

2
χu +G2

uVuU
2
φu

G∗Uφ∗V
2
χu +G∗GuUφ∗U

2
φu

+
λ1δN

2r2G∗φ∗
, (A.14)

Nχ =
G∗V∗ +

Gu(UuV 2
χu−GuVuU

2
φu)

GuU2
φu

+V 2
χu

Vχ∗
− δN

2χ∗
, (A.15)

where we have used dfφ/dφs = pλ1fφ/(φ∗G∗) and

δN ≡ −4N + φ2
∗ − φ2

u +G (φ∗)χ
2
∗ −G (φu)χ

2
u . (A.16)

The number of e-folding N in the above equation is given by Eq. (A.1). It is clear

that δN = 0 when the curvature in field space disappears, i.e., λ2 = 0. From figure

(1), we see that φ→ 0 at the end of inflation. Since we are interested to evaluate

fNL at the end of inflation, we set tu to be a time at the end of inflation, so that

we have φu ∼ 0 and therefore the above equations become

Nφ =
φ∗
2

+
λ1δN

2r2G∗φ∗
, Nχ =

G∗χ∗
2
− δN

2χ∗
. (A.17)

where we have insert the expressions for U and V from Eq. (4.15) into the above

equation.



A.2 NIJ

Since we are interested in the case φu ∼ 0, NIJ can be computed by

differentiating Eq. (A.17) with respect to φ∗ and χ∗ and the results are

NIJ =

(
Nφφ Nφχ

Nχφ Nχχ

)
=

(
1
2

0
0 G∗

2

)
+

(
−λ1

δN (G∗r2+2λ1)+Gφ∗r2φ∗(δN−G∗χ2
∗)

2G2
∗r

2
2φ

2
∗

δNλ1
G∗r2φ∗χ∗

δNλ1
G∗r2φ∗χ∗

− δN
2χ2
∗

)
, (A.18)

where Gφ∗ ≡ dG(φ∗)/dφ∗.



A.3 ∂ϕJB/∂ϕ
K
A

We first set (φ1, χ1) and (φ2, χ2) in Eq. (4.21) to (φA, χA) and (φB, χB)

respectively. Differentiating the result with respect to φA and χA, we respectively

get

0 =
1

UφAG(φA)
− ∂φB
∂φA

1

UφBG(φB)
+
∂χB
∂φA

1

VχB
(A.19)

0 =
∂φB
∂χA

1

UφBG(φB)
+

1

VχA
− ∂χB
∂χA

1

VχB
. (A.20)

In order to solve the above equations for ∂ϕJB/∂ϕ
K
A , we need two more equations

of ∂ϕJB/∂ϕ
K
A . The required equations can be obtained by differentiate the equation

for the number of e-folding with respect to φA and χA. However, there are two

choices of the specification of a point B at which the short wavelength perturbation

mode exits the horizon. We consider each specification separately in the following

sections.



A.3.1 Forward formulation

For the forward formulation, a point B in field space is specified from a

point A such that NA − NB is constant where NA and NB are the number of e-

folding realised backwords in time from the end of inflation to times at which the

long and short wavelength exit horizon respectively. Hence, we have

NA −NB =

∫ φA

φB

U(φ)

Uφ(φ)
dφ+

∫ χA

χB

G(φ(χ))
V (χ)

Vχ(χ)
dχ = constant . (A.21)

Differentiating the above equations with respect to φA and χA, we get

0 =
UA
UφA
− ∂φB
∂φA

UB
UφB
− ∂χB
∂φA

GA
VB
VχB

+

∫ χA

χB

∂G(φ(χ))

∂φ∗

V (χ)

Vχ(χ)
dχ , (A.22)

0 = GA
VA
VχA
− ∂χB
∂χA

GB
VB
VχB
− ∂φB
∂χA

UB
UφB

+

∫ χA

χB

∂G(φ(χ))

∂χ∗

V (χ)

Vχ(χ)
dχ . (A.23)

Expressing the integrations in the above equations in terms of the number of e-

folding and solving Eq. (A.19), (A.20), (A.22) and (A.23), we obtain

ΓfBA ≡

(
∂φB
∂φA

∂φB
∂χA

∂χB
∂φA

∂χB
∂χA

)
(A.24)

=

 UφB (GAUA+GBVB)

GAUφAWB

UφB (GAVA−GBVB)

VχAWB

VχB (GAUA−GBUB)

GAGBUφAWB

VχB (GBUB+GAVA)

GBVχAWB

+

(
UφB
WB

I1
UφB
WB

+ I2
VχB
GBWB

I1
VχB
GBWB

+ I2

)
,

where

I1 ≡
λ1δNBA

2r2GAφA
,

I2 ≡ −δNBA
2χA

,

δNBA ≡ −4NBA + φ2
A − φ2

B +G (φA)χ2
A −G (φB)χ2

B , (A.25)

where NBA ≡ NB −NA which is given in Eq. (A.21). Substituting the expressions



for the potentials from Eq. (4.15) into Eq. (A.24), we get

ΓfBA = 1
2WB

(
φAφBm

2
φ +

GBm
2
χφBχ

2
B

GAφA
+

m2
χδN
GB

)
− m2

φφB

2χAχBWB
(GBχ

3
B −GAχ

2
AχB + δNχA)

1
2WB

m2
χχB

(
δNm

2
χ

m2
φG

2
BφB

+ φA
GB
− φ2B

GAφA

)
−δNχAm2

χ+GAχ
2
AχBm

2
χ+GBm

2
φφ

2
BχB

2GBχAWB

 .

(A.26)



A.3.2 Backward formulation

In the backward formulation, points B and A in field space are specified

by NB and NA which are the number of e-folding realised backwords in time from

the end of inflation to times at which the short and long wevlength perturbations

exit horizon respectively. For this case, the additional equations for ∂ϕJB/∂ϕ
K
A can

be obtained by differentiating equation

NB =

∫ φB

φu

U(φ)

Uφ(φ)
dφ+

∫ χu

χB

G(φ(χ))
V (χ)

Vχ(χ)
dχ , (A.27)

with respect to φA and χA. The differentiation gives two equations describing

relations among ∂ϕIB/∂ϕ
J
A and ∂ϕIu/∂ϕ

J
A. The expressions for ∂ϕIu/∂ϕ

J
A can be

computed using the same approach as for Eq. (A.10), and the results take similar

form as in Eq. (A.10) with the replacement of evaluation at point * by evaluation

at point A in field space. Inserting these results into the relations among ∂ϕIB/∂ϕ
J
A

and ∂ϕIu/∂ϕ
J
A obtained from the differentiate of Eq. (A.27) with respect to φA and

χA, we get two relations for ∂ϕIB/∂ϕ
J
A. Solving these two relations together with



Eqs. (A.19) and (A.20), we obtain

∂φB
∂φA

=
UφB

(
Gu (GBVB −GuVu)U

2
φu

+ (GuUu +GBVB)V 2
χu

)
GAUφAWB

(
GuU2

φu
+ V 2

χu

)
−UφB
WB

λ1δNB
2r2GAφA

, (A.28)

∂φB
∂χA

= −
UφB

(
Gu (GBVB −GuVu)U

2
φu

+ (GuUu +GBVB)V 2
χu

)
VχAWB

(
GuU2

φu
+ V 2

χu

)
UφB
WB

δNB
2χA

, (A.29)

∂χB
∂φA

= −
VχB

(
GBUB

(
GuU

2
φu

+ V 2
χu

)
+Gu

(
GuU

2
φu
Vu − UuV 2

χu

))
GAGBUφAWB

(
GuU2

φu
+ V 2

χu

)
− VχB
GBWB

λ1δNB
2r2GAφA

, (A.30)

∂χB
∂χA

=
VχB

(
GBUB

(
GuU

2
φu

+ V 2
χu

)
+Gu

(
GuU

2
φu
Vu − UuV 2

χu

))
GBWBVχA

(
GuU2

φu
+ V 2

χu

)
− VχB
GBWB

δNB
2χA

, (A.31)

where

δNB ≡ −4NB + φ2
B − φ2

u +G (φB)χ2
B −G (φu)χ

2
u , (A.32)

and NB is given by Eq. (A.27). Using φu ∼ 0 and the expressions for the potentials

from Eq. (4.15), we get Uu ∼ Uφu ∼ 0 and consequently the above equations give

ΓbBA ≡

(
∂φB
∂φA

∂φB
∂χA

∂χB
∂φA

∂χB
∂χA

)
(A.33)

=

 GBUφBVB
GAUφAWB

−GBUφBVB
VχAWB

− UBVχB
GAUφAWB

UBVχB
VχAWB

+

(
−UφB

WB

λ1δNB
2r2GAφA

UφB
WB

δNB
2χA

− VχB
GBWB

λ1δNB
2r2GAφA

VχB
GBWB

δNB
2χA

)
.

Substituting the expressions for the potentials from Eq. (4.15) into the above equa-

tion, we obtain

ΓbBA =

 φBm
2
χ

2GAφAWB
(GBχ

2
B − δNB) − φB

2χAWB

(
GBm

2
χχ

2
B −m2

φδNB
)

− χBm
2
χ

2m2
φφAGAWB

(
m2
φφ

2
B +

m2
χ

GB
δNB

)
χB

2χAWB

(
m2
φφ

2
B +

m2
χ

GB
δNB

)  .

(A.34)
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