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ABSTRACT

The purpose of this research is to study cosmological consequences of the
coupling between dark energy and dark matter through general disformal trans-
formations. Using dynamical analysis, the influence of general disformal coupling
on the evolution of background universe is investigated. We have found two new
classes of fixed points for the case where disformal coefficient depends on both
scalar field and its kinetic term. One of these classes of the fixed points is the
generalization of disformal fixed point found in literature, while the other class of
the fixed points occurs only when disformal coefficient depends on kinetic term of
the scalar field. For the same value of the parameters of model, the stable fixed
points in these classes can take two different physically relevant values. In addition
to the background evolution, we also explore properties of density perturbations
of the Universe for the case of disformal coupling. We analyze how both linear
and non-linear density contrast of matter evolve with time on small scales. Based
on this analysis, the growth of large scale structure in the Universe, the spherical
collapse of the overdense regions and cluster number counts are investigated. We
have found that the disformal coupling can affect an enhancement of the cluster
number counts at late time.



CHAPTER I

INTRODUCTION

After Einstein has proposed the general theory of relativity in 1915, this
theory has been tested many times until now. For example, the precession of
Mercury’s orbit [1, 2], gravitational lensing [3, 4, 5], the gravitational deflection of
light by the Sun [6, 7, 8]. Moreover, this theory has been being used to describe the
macroscopic systems, such as galaxies, clusters of galaxies and also our Universe.
However, the general relativity theory encounters with important problems: Firstly
this theory cannot describe phenomena at the quantum gravity level. Secondly
it cannot be used to explain the present accelerating expansion of the Universe
unless the mysterious form of energy with negative pressure, called dark energy,
is introduced [9, 10]. These are some reasons why at present the Einstein theory
of gravity is faced with many questions as well as the Newton theory. Therefore,
physicists modify the Einstein theory of gravity in order to associated with the
observations. The important models of modified gravity are scalar tensor theories.
These theories reveal an interaction between dark energy and dark matter in some
frames. In this work we will study this interaction inspired by general scalar tensor
theories.

The observational data of Supernova Type Ia (SN Ia) [11, 12, 13], CMB
observation [14, 15, 16], Large-scale structure surveys (LSS) [17, 18, 19] indicated
that currently the Universe is in the phase of an accelerating expansion. In order
to explain this phenomenon, we can assume that dynamics of the present Uni-
verse is dominated by some form of energy e.g. dark energy, or physics of gravity
should deviate from Einstein theory of gravity on large scales (greater than 100
Megaparsec). For this reason the cosmological constant has been reconsidered as
a source of the accelerating behaviour of the Universe [20]. However, it cannot
exactly be identified whether the cosmological constant really drive a present ac-
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celeration of the Universe. The ΛCDM model in which the accelerating expansion
of the Universe is driven by the cosmological constant, is currently a standard
model of the Universe because this model is in agreement with the observational
data [21, 22]. Nevertheless, the standard ΛCDM model of the Universe appears
to be extremely fine-tuned [23], because from the prediction from particle physics
the vacuum energy density is much larger than the observed value of dark energy
[20, 24]. This is the reason why physicists have been constructing new theories in
order to satisfy with the data from the observations.

In the standard ΛCDM model of cosmology, at the present epoch the
Universe appears to be extremely fine-tuned. In attempt to alleviate the fine-
tuned problem, the various models of time dependent Λ are proposed, for example
dark energy models or the models in which the Λ depends on scale factor a. Here
we focus on the model of a scalar field as a dark energy. An important problem
of the model of dark energy is the coincidence problem [25, 26] namely why the
energy density of dark energy and dark matter are of the same order of magnitude
at the present epoch albeit they are evolving differently during the expansion of
the Universe. In order to alleviate the coincidence problem, we assume that there
is an interaction between dark energy and dark matter [27, 28, 29, 30, 31].

At present, it seems that we have already known very little about proper-
ties of the dark energy. For instance, 1) the accelerating expansion of the Universe
shows a redshift z < 1 [31, 32, 33] so that the dark energy (if exist) should dominate
the dynamics of the Universe at late time, 2) the equation of state of dark energy
should be < ωd = −1.006 ± 0.045 [14]. For the case where gravity obeys Einstein
theory, age of the Universe which contain dark energy is older than the Universe
which do not contain dark energy. There are many the models of the Universe
that have been constructed to explain the accelerating expansion of the Universe,
for example the simplest model of the Universe that is ΛCDM, for which ωΛ = −1,
quintessence and k-essence model of the Universe in which scalar field plays the
role of dark energy with ωΛ ̸= −1 [34, 35]. Therefore, investigating the properties
of dark energy is an essential topic of cosmology to insight into our universe. We
have already known that dark energy does not only influence the expansion rate
of the Universe, but also the growth of structure formation and the collapse of
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the overdense regions due to gravitational instability which is slowed down by the
Hubble drag. There are several methods to follow the evolution of the overdense
regions or structure formation, for example N-body simulations [36, 37], the spher-
ical collapse model [38, 39] and other alternative methods [40, 41]. The simplest
method to study non-linear structure formation is the spherical collapse which
can be derived in both dark energy and modified gravity [42] models. Originally
the spherical collapse model was proposed to explain perturbations in pressure-
less matter. From the work [43], they show that the correction of the relativistic
equation for the cosmological background and density contrast can be obtained by
using Newtonian cosmology for the case of non-vanishing pressure. In this work
we study the effect of dark energy, which has negative pressure, in linear and non-
linear regimes, on the structure formation. We also use spherical collapse model
together with Press-Schechter or Sheth-Torman formalism to estimate cluster num-
ber counts of halos. The cluster number counts can be used to study the influence
of the dark energy to overdense regions, test and discriminate among the dark
energy models [39]. In the work [44], the authors use spherical collapse model to
study the linear and non-linear growth of overdense regions of f(T ) model. They
compute the number counts of virialization of haloes in order to distinguish the
current f(T ) and ΛCDM models as well. The study of the influence of dark en-
ergy on the structure formation can be performed under the assumption in which
dark energy can be both homogeneous and inhomogeneous distributes [39, 45]. In
addition, the interaction between dark energy and dark matter remains an open
issue in cosmology. There are many works have been proposed to explain the in-
teraction between dark matter and dark energy [46, 47, 48]. Generally, there are
many motivation in order to study the interaction between dark energy and dark
matter [27, 28, 29, 30, 31, 49, 50, 51].

In this work, we study an interaction between dark energy and dark matter
induced by the general disformal transformation (DFT) which is studied in chap-
ter II. We investigate the background Universe, the evolution of the background
Universe using Cosmological dynamical analysis and also analyze the stability of
fixed points using linear stability theory in chapter III. In chapter IV, we use the
perturbation theory and a spherical collapse model to determine linear and non-



4

linear perturbations and we also study the evolution of spherical collapse regions,
structure formation as well. In addition, we investigate how a disformal interaction
between dark energy and dark matter influences the growth of large scale structure
of the Universe by computing cluster number counts of virialization of haloes in
chapter IV. We also compare the result of the disformal coupling with conformal
coupling, non-coupling and ΛCDM models in chapter IV. In the last chapter V,
we conclude the thesis by summarizing our results and providing encouragement
for future research.

1.1 Frequently used symbols and fundamental constants

• Symbol & Definition

• a & Scale factor of the Universe

• t & Cosmic time

• τ & Conformal time

• N & Number of e-foldings

• z & Redshift

• H & Hubble parameter

• H & Conformal Hubble parameter

• ρ & Energy density

• P & Pressure

• ω & Equation of state

• Ω & Dimensionless density parameters

• S & Action

• L & Lagrangian density

• R & Ricci scalar
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• gµν & Metric tensor

• Gµν & Einstein tensor

• Tµν & Energy-momentum tensor

• ϕ & Scalar field

• X & Kinetic energy of the scalar field

• V (ϕ) & Potential energy of the scalar field

• C(ϕ,X) & Conformal coefficient

• D(ϕ,X) & Disformal coefficient

• Q & Coupling term between scalar field and non-relativistic matter

• δi & Density contrast of component i

1.2 Fundamental constants

• Symbol & Fundamental constants & Numerical value

• c & Speed of light in vacuum & 3 × 108 m/s

• GN & Newton’s gravitational constant & 6.673 × 10−11 Nm2 kg−1

• kb & Boltzmann constant & 8.6 × 10−5 eV K−1

• L⊙ & The Sun’s luminosity & 3.8 × 1026 watts

• M⊙ & The Sun’s mass & 2 × 1030 kg

• ℏ = h/2π & Reduced Planck constant & 1.1 × 10−34Js = 6.6 × 10−16 eVs

• mp =
√

ℏc
G

& Planck mass & 1.2211 × 1019 GeV/c2

• Mp =
√

ℏc
8πG

& Reduced Planck mass & 2.4357 × 1018 GeV

• lp =
√

ℏG
c3 & Planck length & 1.6 × 10−35 m

• Ep = mpc
2 & Planck energy & 2.0 × 109J = 1.2 × 1019 GeV
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• Tp = Ep/kb & Panck Temperature & 1.4 × 1032 K

• H0 & Present Hubble parameter & 73.45 ± 1.66 km s−1 Mpc−1

• Λ & Cosmological constant & 1.11 × 10−52 m−2 or ≃ 10−35 s−2

• ρvacuum & Vacuum energy density & 5.96 × 10−27 kg/m3 ≃ 10−47 GeV4

1.3 The list of conversion factors

• 1 AU = 1.5 × 1011 m

• 1 parsec = 1 pc = 3.261 light years = 3.086 × 1016 m

• 1 year = 1 yr = 3.156 × 107 sec

• Sun mass M⊙ = 1.989 × 1030 kg

• 1 Joule = 1 kgm2 sec−2

• 1 eV = 1.602×10−19 J



CHAPTER II

DISFORMAL TRANSFORMATIONS AND THE
COUPLING BETWEEN DARK ENERGY AND DARK

MATTER

It is generally accepted that at one time the Universe was dominated by
matter (baryonic matter and dark matter) and after that there was a big change
from matter dominated Universe to the present epoch in which dynamics of the
Universe is dominated by mysterious form of energy. This unknown form of the
energy called dark energy. The results of observation indicate that 70% of the
total energy of the Universe come from dark energy [52], 30% of the total energy
is from matter (baryonic matter and dark matter) and the remaining is in the
form of radiation 10−4%. Furthermore, remarkable fact that the energy densities
of dark matter ρc and dark energy ρd are of the same order at present epoch that
is ρd/ρc ∼ O(1). This seems to indicate that we are living in the special moment
of the cosmic history. In order to obtain the Universe which has the same order of
the energy densities of dark matter and dark energy at present epoch, it requires
specific initial conditions in the early Universe. The difference order of energy
densities of dark matter and dark energy between early time and present time is
so called Cosmological Coincidence Problem or CCP [25, 26].

Generally, there are many researches devoted to construct cosmolog-
ical models for alleviating the cosmological coincidence problem for instance:
quintessence model [53, 54], tracker field [55, 56], conformal gravity [57], the cou-
pling between dark matter and dark energy model [29, 58, 59, 60, 61, 62], f(R)

model [63, 64, 65, 66], scalar-tensor theories [67, 68], MOND [69], TeVes [70], DGP
[71], Gauss-Bonnet [72, 73] and Lovelock gravities [74], Horava-Lifshitz gravity
[75], f(T ) gravity [76, 77], D-BIonic and DBI Scalar Field [78] and so on. How-
ever, there are many cosmological models that are ruled out because those models
do not fit well with the observational data. In this research we study the coupling
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between dark energy and dark matter via disformal transformations in which our
analysis is based on scalar-tensor theory of gravitation.

2.1 Conformal transformation

It is generally known and accepted that Einstein theory of gravity is not
only the theory which satisfies Einstein equivalent principle (EEP), and the general
relativity theory cannot explain phenomena of gravity at the quantum level as well.
Therefore, many physicists have been devoting to develop alternative theories of
gravity instead of Einstein theory of gravity. One of the most important theories
is the scalar-tensor theory of gravitation. An action of a scalar-tensor theory of
gravitation in the Jordan frame can be written as

S =
∫
d4x

√
−g
[
F (ϕ)R

2
+ P (ϕ,X)

]
+
∫
d4x

√
−gLm(gµν , ψ), (2.1)

where we have set 1/
√

8πG = 1, g is the metric determinant, ϕ is the scalar field,
X is the kinetic of scalar field, R is the Ricci scalar, F is a function depending
on fields ϕ, P (ϕ,X) is the general Lagrangian density of the scalar field, Lm is
the matter Lagrangian and ψ represents the matter fields. For convenience, we
will use canonical scalar field with P (ϕ,X) = X − V (ϕ), where V (ϕ) is the scalar
field potential. The potential V (ϕ) is often inserted in the action when studying
the early Universe or the late-time Universe or the accelerating Universe. One of
the useful tools in order to study both interaction between dark energy and dark
matter and relations between various theories of gravity and the Einstein theory
of gravity is conformal transformations of metric tensor which can be written as,

ḡµν = C(ϕ)gµν , (2.2)

where C(ϕ) is the conformal factor. Under the conformal transformations given in
equation (2.2), the light cones are not changed and also time-like and space-like
vectors have the same character. The action in equation (2.1) can be transformed
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into Einstein frame under the conformal transformations as

S =
∫
d4x

√
−ḡ[R̄

2
− 1

2
ϕ̄;µϕ̄

;µ − U(ϕ̄)] +
∫
d4x

√
−ḡL̄m(ḡµν , ψ), (2.3)

where R̄ is calculated from ḡµν given in equation (2.2) and ; is the covariant deriva-
tive. The relations between ϕ and ϕ̄, U and V are [79]

∂ϕ

∂ϕ̄
= F√

F + 3F 2
,ϕ/2

, and U(ϕ̄) = V (ϕ)
F 2(ϕ)

∣∣∣∣∣
ϕ=ϕ(ϕ̄)

, (2.4)

where F,ϕ = ∂F (ϕ)
∂ϕ

. One can see that action for gravity in equation (2.3) is in the
Einstein-Hilbert form. Thus, the action given in equation (2.3) relies in the Einstein
frame. In this frame the conformal part enters the matter sector explicitly (the
last term of this equation). Consequently there is a coupling between scalar field
and the matter. In the original frame called the Jordan frame, a scalar degree of
freedom in scalar-tensor theory modifies gravity via non-minimal coupling between
scalar field and Ricci scalar. However, in the Einstein frame, scalar field affects the
geodesic of matter via the direct coupling. In the next topic we study the coupling
between dark matter and dark energy through disformal transformations which is
a general form of the conformal transformations.

2.2 Disformal transformation

In order to alleviate coincidence problem we assume that there is a coupling
between dark matter and dark energy. So as to study interaction between dark
energy and dark matter, we consider action for gravity and scalar field in the
Einstein frame (EF) and write the action for matter in other frame using a new
metric as follows,

S =
∫
d4x

√
−g[R + P (ϕ,X)] +

∫
d4x

√
−ḡLm(ḡµν , ψ, ψ;µ), (2.5)

where R is the Ricci scalar, P (ϕ,X) ≡ X − V (ϕ) is the Lagrangian of the scalar
field, Lm is the Lagrangian of matter field and X = −1

2ϕ;αϕ
;α is the kinetic energy

of the scalar field. The metric in Einstein frame g and the metric ḡ is related
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through general disformal transformations as [80, 81, 82],

ḡµν = C(ϕ,X)gµν +D(ϕ,X)ϕ;µϕ;ν , (2.6)

we use signature (−,+,+,+). Noticed that this transformation will become the
conformal transformation if D(ϕ,X) = 0. Using the property of the metric
gαµg

βµ = δβ
α, we determine the inverse metric ḡµν which is given as

ḡµν = gµν

C(ϕ,X)
+ D(ϕ,X)ϕ;µϕ;ν

C(ϕ,X)[C(ϕ,X) − 2XD(ϕ,X)]
. (2.7)

One can see that the inverse metric ḡµν can exist as long as

C(ϕ,X)[C(ϕ,X) − 2XD(ϕ,X)] ̸= 0 , (2.8)

From the relation between gµν and ḡµν , we can derive the determinant of ḡµν as

gµν ḡ
να = C

(
δα

µ + D

C
ϕ;αϕ;µ

)
, (2.9)

ḡ

g
= C3(C − 2XD) , (2.10)

where ḡ and g are the determinants of ḡµν and gµν respectively. One can see that
the transformation of the action for matter field in equation (2.5) into the Einstein
frame (unbarred frame) leads to the interaction between dark energy and dark
matter. In general, disformal transformations given in equation (2.6) may lead to
Ostrogradski instability in a Jordan frame. In order to avoid this problem we will
use coefficient C and D based on the result from literature which will be presented
below.

The results from Ostrogradski’s theorem in 1850 [83] show that linear in-
stability in the Hamiltonian associated with a Lagrangian which depends on higher
than first derivative cannot be eliminated by partial integration. This instability
occur because the Hamiltonian is not bounded from below and hence large negative
energy can exist in some configurations. This suggests that the realistic theories
of nature should contain only first derivatives of the field in the Lagrangian.

After Ostrogradski proposed theorem of linear instability, there have been
many studies on this theorem and have been found that the Lagrangian which has



11

second derivatives can be free from Ostrogradski instability for some combination of
second derivative of the field. The important work is from G. W. Horndeski in 1974
[84] which has shown that in four dimensional space-time the general Lagrangian
for scalar-tensor theory of gravity with second order derivative of scalar field can
avoid the linear instability when the general Lagrangian is of the form

LH =
5∑

i=2
Li , (2.11)

where

L2 = G2(ϕ,X) , (2.12)

L3 = −G3(ϕ,X)□ϕ , (2.13)

L4 = G4(ϕ,X)R +G4,X [(□ϕ)2 − ϕ;µνϕ
;µν ] , (2.14)

L5 = G5(ϕ,X)Gµνϕ
;µν − 1

6
G5,X [(□ϕ)3 − 3(□ϕ)ϕ;µνϕ

;µν + 2ϕ;ν
;µϕ

;λ
;νϕ

;µ
;λ] , (2.15)

where 2 is the d’Alembertian operator, Gµν is the Einstein tensor and ϕ;µν =

∇ν∇µϕ. Horndeski Lagrangian is one of the important attempts to develop gen-
eral form of scalar-tensor theory. It has been shown that the Horndeski action
is structurally invariant under disformal transformations if C and D depend only
on ϕ. For the appropiate functions of C and D the Horndeski action can be
transformed into Einstein frame using disformal transformations [85]. The gener-
alization of the Horndeski theory has been recently proposed in [86]. They have
shown that the propagating degrees of freedom obey the second order equation of
motion and therefore this theory is free from Ostrogradski instability. This theory
is structurally invariant under disformal transformations where C depends on ϕ

and D depends on both ϕ and X. Thus, if we use this disformal transformations
to our analysis Ostrogradski instability will not occur. Therefore, in this work
we study the interaction between dark energy and dark matter using disformal
transformations as follows

ḡµν = C(ϕ)gµν +D(ϕ,X)ϕ;µϕ;ν , (2.16)

In the modern viewpoint, Horndeski theory can be constructed by covariantization
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of Galileon theory of scalar field. Recently, however, it has been attempted to
generalize Horndeski theory. An interesting work has been proposed in [86]. They
have shown that one of the possible generalizations of Horndeski theory is to add
some pieces of the Galileon action into the L4 and L5 of Horndeski Lagrangian
given by equations (2.14) - (2.15) such as

Lϕ
4 ≡ G4(ϕ,X)(4)R − 2G4,X(ϕ,X)(2ϕ2 − ϕ;µνϕ;µν)

+ F4(ϕ,X)ϵµνρ
σ ϵµ′ν′ρ′σϕ;µϕ;ν′ϕ;νν′ϕ;ρρ′ , (2.17)

Lϕ
5 ≡ G5(ϕ,X)(4)Gµνϕ

µν + 1
3
G5,X(ϕ,X)

[
(2ϕ)3 − 32ϕϕ;µνϕ

;µν + 2ϕ;µνϕ
;µσϕ;ν

;σ

]
+ F5(ϕ,X)ϵµνρσϵµ′ν′ρ′σ′

ϕ;µϕ;µ′ϕ;νν′ϕ;ρρ′ϕ;σσ′ , (2.18)

where G4,X = ∂G4(ϕ,X)/∂X and ϵµνρσ is the totally antisymmetric Levi-Civita
tensor. One can see that Horndeski theory is a subset of the above theory under
the condition

F4(ϕ,X) = 0, F5(ϕ,X) = 0 , (2.19)

It has been shown that the EOM of the extended Horndeski theories remains second
order time derivatives. It is significant that this theory has one more degree of
freedom higher than Horndeski theory. This extra degree of freedom may lead to
Ostrogradski instability. Nevertheless, it has been shown that this extra degree of
freedom does not propagate. Thus, this theory does not involve with Ostrogradski
instability. Usually this theory is called Gleyzes-Langlois-Piazza-Vernizzi (GLPV)
theory [86].

It is clear that the Horndeski action or GLPV action cannot be trans-
formed into Einstein frame using conformal transformations. Therefore, conformal
transformations must be extended to general form. The simplest extention of
conformal transformations is called disformal transformation in which the trans-
formation relation is shown in equation (2.6). The work of [87] have been already
wrote that general Horndeski action or GLPV action is invariance under disfor-
mal transformation for the case where C = C(ϕ) and D = D(ϕ,X) which is the
equation (2.16).
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2.3 Disformal coupling between dark sectors

In this work we use disformal transformations equation (2.16) to study
the coupling between dark energy and dark matter. In order to study the coupling
between dark energy and dark matter, we write the action in the bi-metric form
as shown in equation (2.5). The variation of the equation (2.5) with respect to the
metric tensor gµν yields the Einstein equation as

Gµν = T µν
ϕ + T µν

m , (2.20)

where Gµν is the Einstein tensor computed from gµν . The energy momentum tensor
for scalar field and matter are defined in unbarred frame as

T µν
ϕ = 2√

−g
δ(

√
−gP (ϕ,X))
δgµν

, (2.21)

T µν
m = 2√

−g
δ(

√
−ḡLm)
δgµν

. (2.22)

From the equation (2.20) and the definitions of energy momentum tensor in equa-
tions (2.21) and (2.22), we can use Bianchi identities to show the conservation of
total energy momentum tensor ∇α(T µν

ϕ + T µν
m ) = 0. However, the energy momen-

tum tensor of dark energy and dark matter are not separately conserved. The
variation of the action in equation (2.5) with respect to scalar field ϕ gives

δS|δϕ =
∫
d4x

√
−gδP |δϕ +

∫
δ(

√
−ḡLm)|δϕ = 0 (2.23)

= δSϕ + δSm . (2.24)

The variation for the first term of the above equation is shown below

δSϕ =
∫
d4x

√
−gδ

[
− 1

2
gµνϕ;µϕ;ν − V (ϕ)

]
=
∫
d4x

√
−g
[

− 1
2
gµν

{
ϕ;µ

∂(ϕ;ν)
∂(ϕ;λ)

+ ϕ;ν
∂(ϕ;µ)
∂(ϕ;λ)

}
δϕ;λ − ∂V (ϕ)

∂ϕ
δϕ
]

=
∫
d4x

√
−g
[

− 1
2
gµν

(
δλ

νϕ;µ + δλ
µϕ;ν

)
δϕ;λ − V,ϕδϕ

]
=
∫
d4x

√
−g
[

− ϕ;λδϕ;λ − V,ϕδϕ
]
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=
∫
d4x

√
−g(ϕ;λ

;λ − V,ϕ)δϕ , (2.25)

where the above equation we use integration by part and ignore surface term and
V,ϕ = δV/δϕ. The variation for the second term of the equation (2.24) is shown
below

δSm =
∫
d4xδ(

√
−ḡLm)|δϕ =

∫
d4x

δ(
√

−ḡLm)
δḡαβ

δḡαβ|δϕ . (2.26)

The energy-momentum tensor in barred frame is related to the unbared frame
given in equation (2.22) as

Tαβ
m =

√
−ḡ√
−g

δḡρσ

δgαβ

2√
−ḡ

δ(
√

−ḡLm)
δḡρσ

=
√

−ḡ√
−g

δḡρσ

δgαβ

T̄ ρσ
m , (2.27)

where
T̄ ρσ

m = 2√
−ḡ

δ(
√

−ḡLm)
δḡρσ

(2.28)

Using the equation (2.28), the equation (2.26) becomes

δSm =
∫
d4x

√
−ḡ
2

T̄αβ
m δḡαβ|δϕ . (2.29)

From the equation (2.16), we have

δḡαβ|δϕ = gαβδC(ϕ) + δ [D(ϕ,X)ϕ;αϕ;β]

= gαβ
δC(ϕ)
δϕ

δϕ+
(
δD(ϕ,X)

δϕ
δϕ+ δD(ϕ,X)

δX
δX

)
ϕ;αϕ;β

+D(ϕ,X)δ(ϕ;αϕ;β)
δϕ;λ

δϕ;λ

= gαβC,ϕδϕ+ (D,ϕδϕ+D,XδX)ϕ;αϕ;β +D
(
ϕ;α

δϕ;β

δϕ;λ
+ ϕ;β

δϕ;α

δϕ;λ

)
δϕ;λ

= gαβC,ϕδϕ+ (D,ϕδϕ+D,XδX)ϕ;αϕ;β +D
(
ϕ;αδ

λ
β + ϕ;βδ

λ
α

)
δϕ;λ (2.30)

Consider the third term of the above equation

δX = δ(−1
2
gµνϕ;µϕ;ν) = −1

2
gµνδ(ϕ;µϕ;ν)

= −1
2
gµν (ϕ;µδϕ;ν + ϕ;νδϕ;µ) = −ϕ;νδϕ;ν . (2.31)

Using the above equation, then the equation (2.30) becomes

δḡαβ|δϕ = gαβC,ϕδϕ+ (D,ϕδϕ−D,Xϕ
;νδϕ;ν)ϕ;αϕ;β +D

(
ϕ;αδ

λ
β + ϕ;βδ

λ
α

)
δϕ;λ (2.32)
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Inserting the equation (2.32) into the equation (2.29), we have

δSm =
∫
d4x

√
−ḡ
2

T̄αβ
m [gαβC,ϕδϕ+ (D,ϕδϕ−D,Xϕ

;νδϕ;ν)ϕ;αϕ;β + 2Dϕ;αδϕ;β]

=
∫
d4x

√
−g

[ √
−ḡ

2
√

−g
T̄αβ

m (C,ϕgαβ +D,ϕϕ;αϕ;β) δϕ−
√

−ḡ
2
√

−g
T̄αβ

m D,Xϕ
;νδϕ;νϕ;αϕ;β

+
√

−ḡ√
−g

T̄αβ
m Dϕ;αδϕ;β

]
. (2.33)

Using integration by part to the third and fourth terms and define J =
√

−ḡ/
√

−g,
the equation (2.33) becomes

δSm =
∫
d4x

√
−g

[
J

2
T̄αβ

m (C,ϕgαβ +D,ϕϕ;αϕ;β) + 1
2

∇ν

(
JT̄αβ

m D,Xϕ
;νϕ;αϕ;β

)
−∇α

(
JT̄αβ

m Dϕ;β
)]
δϕ (2.34)

where T̄αβ
m is the energy momentum tensor in barred frame which is related to Tαβ

m

as

Tαβ
m =

√
−ḡ√
−g

δḡρσ

δgαβ

2√
−ḡ

δ(
√

−ḡLm)
δḡρσ

=
√

−ḡ√
−g

δḡρσ

δgαβ

T̄ ρσ
m (2.35)

=(Cδα
ρ δ

β
σ − 1

2
D,Xϕ

;αϕ;βϕ;ρϕ;σ)JT̄ ρσ
m . (2.36)

From the equations (2.25) and (2.34), we obtain the evolution equation for scalar
field as

ϕ;α
;α − V,ϕ =∇β(JT̄αβ

m Dϕ;α) − 1
2
JT̄αβ

m (C,ϕgαβ +D,ϕϕ;αϕ;β)

− J

2
∇ν [T̄αβ

m D,Xϕ
;νϕ;αϕ;β] ≡ Q . (2.37)

We use the disformal transformations in equation (2.16) to calculate the evolution
equation for scalar field in equation (2.37) and the relation between Tαβ

m and T̄αβ
m .

Then, we obtain the relation between Tαβ
m and T̄αβ

m as follows

T̄αβ
m = Tαβ

CJ
+ D,Xϕ

;αϕ;β

2CJ(C − 2D,XX2)
Tmp, (2.38)
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where

Tm =gαβT
αβ
m = JCgρσT̄

ρσ
m + JD,XXϕ;ρϕ;σT̄

ρσ
m , (2.39)

Tmp ≡ϕ;αϕ;βT
αβ
m = J(C − 2D,XX

2)ϕ;ρϕ;σT̄
ρσ
m , (2.40)

and then

gαβT̄
αβ
m = CTm −D,XX(Tmp + 2TmX)

CJ(C − 2D,XX2)
, (2.41)

ϕ;αϕ;βT̄
αβ
m = Tmp

J(C − 2D,XX2))
. (2.42)

From the conservation of the total energy momentum tensor, we get

∇αT
αλ
m = −∇αT

αλ
ϕ = −Qϕ;λ. (2.43)

In order to obtain the coupling Q on the right hand side of the above equation, we
multiply equation (2.37) by ϕ;λ and rearrange the left hand side of the resulting
equation in the form of the energy momentum tensor. Furthermore, for simplicity
of the following calculation we write Q in the following expressions

FQ =C[−2DF1F1,ϕ + CF1(F2,Xϕ −D,ϕ) +D,X(C,ϕF1 − 2F1,ϕF2)X]Tmp

− CC,ϕF1(C − 2D,XX
2)Tm − CD,XF1F2Tmp + 2CDF 2

1 Θ1

+ 2CD,XF
2
1 Θ2 + 2CDF 2

2 Θ3 − CD,XF1F2Θ4 − C(D,XXF1F2

−D,XF1,XF2 +D,XF1F2,X)TmpΘ5, (2.44)

where F1 ≡ C − 2D,XX
2, F2 ≡ C + 2DX,F ≡ 2C2F 2

1 and

Θ1 =ϕ;αβT
αβ
m , Θ2 = ϕ;αX;βT

αβ
m , Θ3 = ϕ;α∇βT

αβ
m , (2.45)

Θ4 =ϕ;α∇αTmp, Θ5 = ϕ;αX;α. (2.46)

Disformal coupling between dark energy and dark matter has been studied
in [81, 82, 85, 88, 89, 90]. In those works they have studied the disformal transfor-
mation in the simple case in which both C and D depend only on ϕ. The results
from [81] showed that the evolution of the background Universe in the disformal
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coupling theory is nearly similar to that in ΛCDM model. This theory can address
the coincidence problem and cosmological constant problems. It has been shown
in [85] that the disformal coupling offers possibilities to construct models for cos-
mic acceleration. Furthermore, disformal coupling leads to a new fixed point of
cosmic evolution and gives rise to the disformal screening mechanism. In [88], the
authors study the effects of the interactions between dark energy and dark matter
on the Universe using both conformal and disformal couplings. They discuss the
background evolution, anisotropies in the cosmic microwave background and large
scale structures. In our work we use the general disformal transformation, where
D depends on both ϕ and X, to study the influence of disformal coupling be-
tween dark energy and dark matter on the background Universe and cosmological
perturbations.



CHAPTER III

COSMOLOGICAL DYNAMICAL EQUATIONS

In order to understand and study evolution of the Universe from very early
to late time. We need some tools to analyze the complex evolution of the Universe.
One of the important tools for the cosmologist is the dynamical analysis. In the
context of cosmology, we call cosmological dynamical system. In this chapter, we
use the cosmological dynamical system in order to investigate the evolution of the
Universe in the presence of the scalar field which is the presentation of dark energy
and responds to the accelerating expansion of the Universe at late time. In this
work, we are interested in disformal fixed point which occurs due to the disformal
coupling that we have introduced in the equation (2.37). We use the cosmological
dynamical system in order to find the fixed points of the system and use linear
theory of stability to analyze the stability of each fixed point. In the next section,
we will find evolution equation of the scalar field and then find the fixed points of
the system and analyze the stability for each fixed point of the system.

3.1 Evolution equations for FLRW Universe

In this section, we study the influences of disformal coupling on the evo-
lution of background Universe, based on the cosmological principle which states
that the Universe is homogeneous and isotropic on large scale (no center or no
special points exist in the Universe). We use the standard Friedmann–Lemaître–
Robertson–Walker (FLRW) line element and perfect fluid model of matter. The
spatially-flat FLRW line element takes the form

ds2 = −a(τ)2dτ 2 + a(τ)2dxidx
i, (3.1)
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here a(τ) is the scale factor and τ is the conformal time. The relation between
cosmic time t and conformal time τ is dt = adτ . From the Einstein equation
(2.20), we obtain the Friedmann equation as

H2 = 1
3M2

p

[1
2
ϕ′2 + a2V (ϕ) + a2ρm

]
. (3.2)

where H ≡ a′/a is the Hubble parameter and a prime denotes derivative with
respect to the conformal time τ . Using the above line element in the equation
(3.1), we can write the equations (2.45) - (2.46) as follows

a2□ϕ = ϕ′′ − 2Hϕ′, Tm = −ρm, Tmp = 2ρmX,

a2Θ1 = (ϕ′′ − Hϕ′)ρm, a2Θ2 = 2(ϕ′′ − Hϕ′)ρmX, a2Θ3 = ϕ′(ρ′
m + 3Hρm),

a2Θ4 = ϕ′(ρ′
m − 2Hρm), a2Θ5 = −2ϕ′ρ′

mX − 4(ϕ′′ − Hϕ′)ρmX.

(3.3)
Inserting the above quantities into the equation (2.44), we obtain the interaction
term for the background as,

FQ ⇒ FcQ0,

FcQ0 = 2Cϕ′ρ′
mF1(DF1 +D,X) + a2Cρm[−4F1,ϕX(DF1 +D,XF2X)

+ CF1(C, ϕ+ 2X(−D,ϕ + F2,Xϕ))] + 4Cϕ′Hρm[DF 2
1 −X(D,XXF1F2X

+D,X(F 2
1 − F1,XF2X))] + 2Cϕ′′ρm[DF 2

1 +X(2D,XXF1F2X

+D,X(2F 2
1 + 3F1F2 − 2F1,XF2X + 2F1F2,X))]. (3.4)

We have used X = ϕ′2/2a2 in the above equation. Inserting the above equation
into the equation (2.43), then we can express ρ′

m as follows

Fmρ
′
m =a2Cϕ′ρm

[
− 4F1,ϕX(DF1 +D,XXF2) + CF1

(
Cϕ + 2(−D,ϕ + F2,Xϕ)X

)]
+ 2Cϕ′′ϕ′ρm

[
DF 2

1 +X
(
2D,XXF1F2X +D,X(2F 2

1 + 3F1F2 − 2F1,XF2X

+ 2F1F2,XX)
)]

− 2CHρm

[
3a2CF 2

1 + 4a2X
(

−DF 2
1 +X

(
D,XXF1F2X

+DX(F 2
1 − F1,XF2X + F1F2,XX)

))]
, (3.5)
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where Fm = 2a2CF1[CF1 − 2X(DF1 +D,XF2X)]. From the equations (2.37) and
(3.5), we obtain the equation of motion for the scalar field as

∂α∂
αϕ+ Γα

αβϕ
,β − V,ϕ = −Q, (3.6)

ϕ′′ + 2Hϕ′ + V,ϕa
2 = F−1

ϕ ρm

[
6ϕ′H(F 2

1Fd + F1F2Fd,XX − 2D,XFd3X
2)

+ a2C{−C,ϕF1 + 2(D,ϕF1 − F1F2,Xϕ + 2F1,ϕFd1)}X

+ 2a2Vϕ(F 2
1Fd + F1F2Fd,XX − 2D,XFd3X

2)
]
,

=F−1
ϕ ρm

[
(6ϕ′H + 2a2Vϕ)(F 2

1Fd + F1F2Fd,XX − 2D,XFd3X
2)

+ a2C{−C,ϕF1 + 2(D,ϕF1 − F1F2,Xϕ + 2F1,ϕFd1)}
]

≡ −Q0,

(3.7)

where

Fϕ = 2
[
CF1(F1 − 2Fd1X) + ρm(F 2

1Fd + F1F2Fd,XX − 2D,XFd3X
2)
]
, (3.8)

and

Fd ≡ D + 2D,XX, Fd1 ≡ D +D,XX,

Fd2 ≡ DF1,X +D,XF2,XX, Fd3 ≡ F1,XF2 − F2,XF1. (3.9)

The equation of motion for energy density of matter ρm and radiation ρr can be
computed from the equation (2.43) as

ρ′
m + 3Hρm =Q0ϕ

′, (3.10)

ρ′
r + 4Hρr =0. (3.11)

3.2 Cosmological dynamical systems

In this section, we discussed some aspects of cosmology in the context
of dynamical systems. Alternative to [59], we suggest the readers that the work
of [91] is also a good and simple example in order to deeply understand cosmo-
logical dynamical systems. In order to construct the models of cosmology which
satisfy observational data, the series of cosmological epoch should contain the era
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of inflation → radiation dominated → matter dominated → cosmological constant
dominated respectively which could be dubbed minimal cosmological model.

We now use the results from the previous section to calculate the au-
tonomous equations and evaluate fixed points which lead to the understanding
the evolution of the background Universe for the existence of disformal coupling
between dark energy and dark matter. We neglect the contribution from the radia-
tion density in this work. We derive the autonomous equations using the conformal
coefficient, disformal coefficient and the scalar field potential of the form

C = C0e
λ1ϕ, D = D0M

−4(1+λ3)eλ2ϕXλ3 , V = M4
v e

λ4ϕ, (3.12)

where λ1, λ2, λ3, λ4 and C0 are dimensionless constant parameters whilst M and
Mv are the constant parameters with the dimension of mass. So let us begin the
analysis by defining the dimensionless variables as

Ωc =a
2ρc

3H2 , Ωb = a2ρb

3H2 ,

x2
1 = ϕ′2

6H2 , x2 = a2V

3H2 , x3 = DH2

a2C
, (3.13)

where we set 1/
√

8πG = 1 and Ωc is the dark matter density parameter. It follows
from the equation (3.2) that these quantities satisfy the constraint equation,

1 = x2
1 + x2 + Ωb + Ωc . (3.14)

In order to compute the evolution equations for x1, x2 and x3 we first differentiate
the equation (3.2) to obtain

H′

H2 = 1
2

(3x2 − 3x2
1 − 1) . (3.15)

From the equation (3.15), we see that

H′ = dH
dτ

= a
d2a

dt2
, (3.16)

d2a

dt2
= H2

2a
(3x2 − 3x2

1 − 1) , (3.17)

where t is the cosmic time. Differentiating the variables x1, x2 and x3 from the
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equations (3.13) with respect to the number of e-folding N = ln a together with
using the equation (3.15), we obtain the following autonomous equations,

x1,N =dx1

dN
= K̄ + Σ̄

Fϕ

, (3.18)

x2,N =dx2

dN
= x2[3(1 − x2 + x2

1) +
√

6λ4x1] , (3.19)

x3,N =dx3

dN
= x3

x1
[
√

6x2
1(λ2 − λ1) + 2λ3x1,N + 3x1(1 + λ3)(x2 − x2

1 − 1)] , (3.20)

Ωb,N =dΩb

dN
= Ωb(3x2

1 − 3x2) . (3.21)

where the x1,N means differentiation x1 with respect to N and the new parameters
from the equation (3.18) are expressed below

Fϕ =2C3
[
(1 − 6λ3x3x

2
1)
(
1 − 6x3x

2
1(1 + 2λ3)

)
+ 3x3(1 + λ3)(1 − x2

1 − x2 − Ωb)
(
1 + 2λ3(1 + 3x3x

2
1)
)]
, (3.22)

K̄ =C3
[
3x3

1 −
√

6λ4x1 − 3x1(1 + x2)
][

(1 − 6λ3x3x
2
1)

×
(
1 − 6x3x

2
1(1 + 2λ3)

)
+ 3x3(1 + λ3)(1 − x2

1 − x2 − Ωb)

×
(
1 + 2λ3(1 + 3x3x

2
1)
)]
, (3.23)

Σ̄ =
√

3/2C3(1 − x2
1 − x2 − Ωb)

[
λ1
(
6x3x

2
1(2 + 3λ3) − 1

)
+ 6x3(1 + λ3)(

√
6x1 + λ4x2)

(
1 + λ3(2 + 6x3x

2
1)
)

− 6λ2x3x
2
1

(
1 + λ3(2 + 6x3x

2
1)
)]
. (3.24)

We can derive fixed points by solving the equation,

dx1

dN
= dx2

dN
= dx3

dN
= dΩb

dN
= 0, (3.25)

and then we are able to analyze the stability of each fixed point using stability
analysis in the later topic. The four autonomous equations (3.18) - (3.21) can
completely describe the dynamics of this cosmological model in principle.
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3.3 Fixed points and stability analysis

3.3.1 Fixed points

In this analysis we concentrate on the evolution of the Universe at late
time. The fixed points of the system can be obtained by setting the left hand side
of the equations (3.18) - (3.21) to be zero and then solving the resulting algebraic
equations.

Potential dominated solution

Now we consider the phase of potential dominated Universe which corre-
sponds to the fixed point x1 = 0 and x2 = 1. Inserting this fixed point into the
equation (3.19) we obtain λ4 = 0. Setting λ4 and Ωb to be zero, thus the equation
(3.18) becomes

x1,N =1
4
x1f

[
6(x2

1f − 2) −

√
6x1f

(
− λ1 + 36λ3x

3
1fx

2
3f

(
− x1fλ2 +

√
6(λ3 + 1)

)

+ 6x1fx3f

(√
6(1 + 3λ3 + 2λ2

3) + x1f

(
− λ2(1 + 2λ3) + λ1(2 + 3λ3)

)))
×
(

18x4
1fλ3 (3λ3 + 1)x2

3f − 3x2
1f

(
2λ2

3 + 9λ3 + 3
)
x3f + 1

)]
= 0. (3.26)

From the above equation, by taking limit x1f → 0, we obtain

lim
x1f →0

( 1
x1f

dx1f

dN

∣∣∣∣∣
x1=x1f ,x2=0,Ωb=0

)
= −3. (3.27)

Then, substituting the above result into the equation (3.20), we get

− 6λ3x3f = 0. (3.28)

This equation suggests that the potential dominated solution can occur in two
situations. First situation can occur when the disformal coefficient is much smaller
than the conformal coefficient such that x3f ≃ 0. Second situation exists when the
disformal coefficient does not depend on kinetic energy of the scalar field, in other
words λ3 = 0.
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Scaling and scalar field dominated solution

In this section we consider the case of x2
1f + x2f ≤ 1 and both x1f and x2f

are not equal to zero. Then Ωd = x2
1f + x2f ≥ 0 at the fixed point. Let us begin

our calculation by setting the equation (3.19) to be zero. We obtain

0 = x2f [3(1 − x2f + x2
1f ) +

√
6λ4x1f ] . (3.29)

For this case x2f is not zero, then we get

0 =3(1 − x2f + x2
1f ) +

√
6λ4x1f , (3.30)

x2f =1 +
√

2
3
λ4x1f + x2

1f . (3.31)

Inserting the equation (3.31) into the equation (3.20) and using the fact that at
the fixed point both x1,N and x3,N are zero, we obtain

0 =
√

6[λ2 − λ1 + λ4(1 + λ3)]x1fx3f . (3.32)

One can see that when x3f ̸= 0, the above equation gives

λ2 = λ1 − λ4(1 + λ3). (3.33)

The equation (3.32) can also be satisfied when x3f = 0, which implies that the
disformal coefficient equals to zero at this fixed point. Then, this fixed point is
the conformal scaling solution. It can be seen that for the case x3f ̸= 0, the fixed
point corresponds to disformal scaling solution. We will consider the conformal
and disformal fixed point in the following topics.

Conformal scaling solutions

In this section we consider the conformal fixed point where the disformal
coefficient vanishes at the fixed point, that is x3f = 0, but the conformal coefficient
is not zero and still depends on the scalar field. So let us start the calculation by
substituting the equation (3.31) into the equation (3.18) and setting x3f = 0, we
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obtain

0 = 1
2
[
x1f

(
λ4λ1 − 2(λ2

4 + 3)
)

+
√

6x2
1f (λ1 − 2λ4) −

√
6λ4

]
. (3.34)

From the above equation, we obtain the fixed point x1f as

x1f = − λ4√
6
,

√
6

λ1 − 2λ4
. (3.35)

We can solve for fixed point x2f by inserting the equation (3.35) into the equation
(3.31), then we obtain

x2f = 1 − λ2
4

6
,

λ2
1 − 2λ4λ1 + 6
(λ1 − 2λ4)2 . (3.36)

From the equations (3.35) and (3.36), we obtain the conformal fixed points as

(x1f , x2f , x3f ) = (− λ4√
6 , 1 − λ2

4
6 , 0), (3.37)

(x1f , x2f , x3f ) = (
√

6
λ1−2λ4

,
λ2

1−2λ4λ1+6
(λ1−2λ4)2 , 0). (3.38)

One can see that the first fixed point given in equation (3.37) is the scalar field
dominated solution due to x2

1f +x2f = 1. This fixed point does not depend on λ1 or
conformal coupling term. Thus, this fixed point is similar to the field dominated
fixed point in quintessence models. However, the stability of this fixed point is
different from quintessence models that will be shown in section 3.3.2. The second
fixed point given in equation (3.38) is the scaling solution, i.e. (x2

1 + x2)/Ωm is a
non-zero constant. Nevertheless, we note that in our consideration Ωb vanishes at
these fixed points.

Disformal scaling solutions

For this case, we consider fixed points where x3f ̸= 0 in which the disformal
coefficient is not zero, then the equation (3.33) is satisfied. Consequently, these
fixed points are disformal scaling solutions. We start to calculate by expressing
the density parameter and the equation of state of dark energy in terms of x1f and
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x2f at the fixed point as

Ωdf = x2
1f + x2f , ωdf =

x2
1f − x2f

x2
1f + x2f

, (3.39)

where Ωdf and ωdf refer to the density parameter and the equation of state of dark
energy at the fixed point respectively. In order to relate the calculation to the
observable quantities, we also write x1f and λ4 in terms of Ωdf and ωdf by inserting
the equation (3.31) into the equation (3.39). We obtain

Ωdf = 2x2
1f +

√
2
3
λ4x1f + 1, ωdf =

−1 −
√

2
3λ4x1f

2x2
1f +

√
2
3λ4x1f + 1

. (3.40)

Solving the above equations for x1f and λ4, we get

x1f = ±

√
Ωdf (1 + ωdf )

√
2

, λ4 = ∓
√

3(1 + ωdf )√
(1 + ωdf )Ωdf

. (3.41)

Inserting the above relations into the equation (3.31), we obtain

x2f = 1
2

(1 − ωdf )Ωdf . (3.42)

It is noticed that we can choose the values of x1f , x2f and λ4 by fixing Ωdf and
ωdf . Next one, we calculate x3f by inserting the equations (3.31) and (3.33) into
the equation (3.18). We obtain the higher order polynomial equation as

x1,N = − 1
2
(
2(λ2

4 + 3)x1 + 2
√

6λ4x
2
1 +

√
6λ4

)
− 1

4

[√
2
3
x1
(√

6λ4 + 6x1
)(

6x3
(
λ4 +

√
2
3

(3 + γ2)x1 + λ4x
2
1

)
(λ3 + 1)

×
(
1 + (2 + 6x3x

2
1)λ3

)
+ 6x2

1x3(λ4 − λ1 + λ4λ3)
(
1 + (2 + 6x3x

2
1)
)

+ λ1
(

− 1 + 6x2
1x3(2 + 3λ3)

))][
− x1x3(

√
6λ4 + 6x1)(λ3 + 1)

×
(
λ3(6x2

1x3 + 2) + 1
)

+
(
1 − 6x2

1λ3v5
) (

1 − 6x2
1 (2λ3 + 1)x3

) ]−1

= 0.

(3.43)

From the above equation, we then have a polynomial equation which has degree 2
of x3f and degree 6 of x1f . Therefore, it is difficult to solve this equation for x1f .
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For this reason, we will solve this equation for x3f instead of x1f . Consequently,
we obtain solutions of x3f as follows

x3f1 = 1
6x2

1λ3
, (3.44)

x3f2 = x1 (2λ4 − λ1) +
√

6
6x2

1

(
x1 (4λ4λ3 + 2λ4 − λ1) +

√
6 (2λ3 + 1)

) , (3.45)

where x3f1 and x3f2 are the solutions of the polynomial equation of the fixed point.
Substituting x1f and λ4 from the equation (3.41) into the above equation, we obtain
the solutions of x3f as

x3f1 = 1
3λ3Ωdf (1 + ωdf )

, (3.46)

x3f2 =
2ωdf

√
3Ωdf + λ1

√
ωdf + 1

3Ωdf (ωdf + 1)
(
2
√

3Ωdf (2λ3 + 1)ωdf + λ1
√
ωdf + 1

) . (3.47)

One can see from the equations (3.31), (3.41), (3.46) and (3.47) that there
are two classes for the disformal scaling solutions as shown in Table 1. From the
equation (3.46), it is remarkable that x3f1 → ∞ when λ3 → 0. This implies that,
the fixed point in the class I cannot occur when λ3 = 0. In other words, this fixed
point does not exist when disformal coefficient does not depend on kinetic terms
of scalar field. In contrast, the fixed point in the equation (3.47) can occur when
the parameter λ3 = 0 discussed in [92]. We will discuss this case later. In the next
section, we study linear stability theory and then use this theory to analyze the
stability for each fixed point previously obtained from the cosmological dynamical
analysis. Consequently, we can explain how the Universe evole and what are phases
the Universe passed until present phase by the stability of fixed points.

3.3.2 Linear stability theory

In this section, we will give a brief detail of the linear stability theory.
In the context of mathematics, this theory can address the stability of differential
equation solutions. In the context of cosmology, this theory can use to analyze the
stability of fixed points for each phase of cosmological dynamical system. Let us
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Table 1 The fixed points for the disformal scaling solutions in the fuc-
ntion of ωdf and Ωdf . The fixed point class I cannot exist when
λ3 = 0

class x1f x2f x3f

I ±
√

(1+ωdf )Ωdf√
2

1
2 (1 − ωdf ) Ωdf x3f1

II ±
√

(1+ωdf )Ωdf√
2

1
2 (1 − ωdf ) Ωdf x3f2

begin to study the linear stability theory by defining dynamical system in term
of autonomous equation as ẋ = f(x) where f(x) = (f1(x), ..., fn(x)). Using Taylor
expansion around fixed point x0, we obtain

fi(x) = fi(x0) +
n∑

j=1

∂fi

∂xj

(x0)yj + 1
2!

n∑
j,k=1

∂2fi

∂xj∂xk

(x0)yjyk + ..., (3.48)

where y = x − x0. Here, we consider only the first order partial derivative. Con-
sequently, we obtain the Jacobian matrix of function f(x) as

J = ∂fi

∂xj

∣∣∣∣∣
x=x0

=



∂f1
∂x1

∣∣∣
x=x0

. . . ∂f1
∂xn

∣∣∣
x=x0

∂f2
∂x1

∣∣∣
x=x0

. . . ∂f2
∂xn

∣∣∣
x=x0... . . . ...

∂fn

∂x1

∣∣∣
x=x0

. . . ∂fn

∂xn

∣∣∣
x=x0

 . (3.49)

The equation (3.49) contains the information about the stability of the system.
Moreover, in the context of cosmology J can be used to determine the stability
of the system. However, the linear stability theory cannot use to determine the
stability of the system when the Jocobian matrix J equal to zero. For the case
J = 0, the stability of the dynamical systems can be determined by changing
variable, Lyapunov stability, centre manifold theory and etc. [93]. Although, we
will consider this case in later topic.

Now, we consider a simple example of two dimensional dynamical system
before returning to more complex cosmological dynamical system. Consider the
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Table 2 The stability of the two dimensional dynamical system.

Eigenvalues Explanation
µ1 > 0, µ2 > 0 unstable fixed point
µ1 < 0, µ2 < 0 stable fixed point
µ1 < 0, µ2 > 0 saddle fixed point
µ1 > 0, µ2 < 0 saddle fixed point

simple autonomous system given by

ẋ1 =g(x1, x2), (3.50)

ẋ2 =h(x1, x2), (3.51)

where g and h are functions of x1 and x2. At the fixed points (x10, x20) of the
system g(x1, x2) and h(x1, x2) are equal to zero, that is

g(x10, x20) = 0, and h(x10, x20) = 0. (3.52)

The Jacobian matrix of this system is given by

J2 =
[

∂g
∂x1

∂g
∂x2

∂h
∂x1

∂h
∂x2

]
=
[
g,x1 g,x2

h,x1 h,x2

]
, (3.53)

where J2 is a 2 × 2 matrix. Thus, J2 has 2 eigenvalues for this system that is µ1,2

as follows

µ1 =1
2

(g,x1 + h,x2) + 1
2

√
(g,x1 − h,x2)2 + 4gx2h,x1 , (3.54)

µ2 =1
2

(g,x1 + h,x2) − 1
2

√
(g,x1 − h,x2)2 + 4gx2h,x1 . (3.55)

The stability of the system depends on the values of eigenvalue. We express some
possible cases and give a short explanation for each case in Table 2. In the next
section, we use the linear stability theory to analyze each fixed point which is
obtained from the previous section.
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Potential dominated

The potential dominated fixed point corresponds to (x1f , x2f ) = (0, 1),
λ1 = λ4 = Ωb = 0. As mentioned above and from the equation (3.49), we obtain
the Jacobian matrix for the potential dominated fixed point as

J =


∂x1,N

∂x1

∂x1,N

∂x2

∂x1,N

∂x3

∂x1,N

∂Ωb
∂x2,N

∂x1

∂x2,N

∂x2

∂x2,N

∂x3

∂x2,N

∂Ωb
∂x3,N

∂x1

∂x3,N

∂x2

∂x3,N

∂x3

∂x3,N

∂Ωb
∂Ωb,N

∂x1

∂Ωb,N

∂x2

∂Ωb,N

∂x3

∂Ωb,N

∂Ωb

 =


−3 0 0 0
0 −3 0 0
0 −3(−1 + 36x3) −6 −108x2

3
0 0 0 −3

 .
(3.56)

From the above Jacobian matrix, we have four eigenvalues as follows

µ1 = − 3, µ2 = −3,

µ3 = − 6, µ4 = −3. (3.57)

Then, the potential dominated solution is stable at fixed point because the all
eigenvalues of the Jacobian matrix (3.57) are negative. This suggests that the
Universe can evolve from other phase which is unstable or saddle phase to the
stable phase of the potential dominated epoch.

Conformal scaling solutions

For the case of conformal scaling solutions, disformal coefficient vanishes
(D = 0) at the fixed points. This case we neglect the contributions for radiation.
Once again, we write the eigenvalues of the fixed points in terms of density param-
eter Ωdf and the equation of state ωdf to reduce the complexity of the system. In
order to calculate the stability of these fixed points, we begin the calculation by
inserting the conformal fixed points from the equations (3.37) and (3.38) into the
equation (3.39). Then we respectively get

Ωdf =1, ωdf = λ2
4

3
− 1, (3.58)

Ωdf =λ
2
1 − 2λ4λ1 + 12
(λ1 − 2λ4)2 , ωdf = − λ1 (λ1 − 2λ4)

λ2
1 − 2λ4λ1 + 12

. (3.59)
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The equation (3.58) for the fixed point in the equation (3.37) and the equation
(3.59) for the fixed point in the equation (3.38). Solving the above equations for
λ1 and λ4, we respectively obtain

λ4 = ∓
√

3(1 + ωdf ), for the equation (3.58), (3.60)

λ1 = ∓
2ωdf

√
3Ωdf

√1 + ωdf

, λ4 = ∓
√

3(1 + ωdf )
√1 + ωdfΩdf

, for the equation (3.59). (3.61)

From the autonomous equations (3.18) - (3.20) and the equation (3.49), we obtain
the Jacobian matrix for the conformal scaling solutions as

J =


∂x1,N

∂x1

∂x1,N

∂x2
0 ∂x1,N

∂Ωb

0 ∂x2,N

∂x2
0 0

0 0 ∂x3,N

∂x3

∂x3,N

∂Ωb

0 0 0 ∂Ωb,N

∂Ωb

 . (3.62)

In order to determine eigenvalues for the conformal scaling solutions, we set x3 = 0

and insert the equations (3.37) and (3.60) into the above Jacobian matrix. We have

J =


3ωdf + λ1

2

√
3α

√
3

2
√

2(
√

3α + λ1) 0
√

3
2
√

2λ1

0 −3
2α 0 0

0 0 −
√

3α
(
λ1 − λ2 +

√
3α (λ3 + 1)

)
0

0 0 0 3ωdf

 ,
(3.63)

where α = 1 + ωdf . We then obtain the eigenvalues for the conformal fixed point
given in equation (3.37) as

µ+ =
(

3ωdf ,
3(ωdf − 1)

2
, 3ωdf + λ1

2
√

3α,

√
α
(√

3(λ2 − λ1) − 3(1 + λ3)
√
α
))

, (3.64)

µ− =
(

3ωdf ,
3(ωdf − 1)

2
, 3ωdf − λ1

2
√

3α,

√
α
(√

3(λ1 − λ2) − 3(1 + λ3)
√
α
))

. (3.65)

Similarly to the previous calculation, we set x3 = 0 and insert the equations (3.38)
and (3.61) into the Jacobian matrix given by equation (3.62). Then we obtain the



32

eigenvalues for the conformal fixed point given in equation (3.38) as follows

µ+ =
(

3Ωdfωdf ,
3
4

Ωdfωdf − 1 −
√
αβωdf − γ − 7

α

 ,
3
4

(
Ωdfωdf − 1 +

√
αβωdf − γ − 7

α

)
,

λ2

√
3Ωdfα− 3λ3

(
1 − Ωdfωdf + λ3(1 + Ωdfωdf )

))
, (3.66)

µ− =
(

3Ωdfωdf ,
3
4

(
Ωdfωdf − 1 −

√
αβωdf − γ − 7

α

)
,

3
4

(
Ωdfωdf − 1 +

√
αβωdf − γ − 7

α

)
,

− λ2

√
3αΩdf − 3λ3

(
1 − Ωdfωdf + λ3(1 + Ωdfωdf )

))
, (3.67)

where β = 9 + Ω2
df and γ = 2Ωdf (ω2

df + 5ωdf − 4). The stabilities of the fixed point
in equations (3.37) and (3.38) have been already discussed in literature [94, 95].
Therefore, we are not going to discuss in detail here. However, the main conclusion
can be summarize using equation (3.61) as following consideration.

For the conformal scaling solutions, we have x1f ̸= 0, so that ωdf > −1

and then λ4 ̸= 0 as follows from the equation (3.60). This equation also suggests
that the potential dominated fixed point, which corresponds to ωd = −1, occur
when λ4 = 0. We note that this fixed point describes de-Sitter expansion.

For the case λ4 < 0, λ1 <
−6ωdf√
3(1+ωdf )

and the values of λ2 and λ3 are chosen
suitably, for example λ2 ∼ λ3 ∼ O(1), the Universe can evolve to the stable fixed
point (ωd,Ωd) = (ωdf , 1) at late time. For the case λ4 > 0, when λ1 >

6ωdf√
3(1+ωdf )

the Universe evolve to the stable fixed point which is (ωd,Ωd) = (ωdf , 1).

Disformal scaling solutions

For the case of disformal fixed points, the fixed points can occur only when
x3f ̸= 0 or D ̸= 0. For this case, we set Ωb = 0. Then, determinant of the matrix
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J for the disformal scaling solutions can be expressed as

det J =∂x1,N

∂x3

[
3(1 + λ3)(

√
6λ4 + 6x1f )x1fx2f +

(
9x2

1f (1 + λ3)

+ 2
√

6x1f (λ1 − λ2) − 3(1 + λ3)(x2f − 1)
)

×
(√

6λ4x1f + 3x2
1f − 6x2f + 3

)]
x3f . (3.68)

Inserting the fixed points from Table 1 into the above equation we obtain J = 0

for all fixed points. This suggests that one or more of the eigenvalues for each
fixed points are zero. Consequently, we cannot use the linear stability theory to
analyze the stability of the system for these fixed points. Fortunately, for the
disformal fixed points, we have relation betweens λ2 and λ1, λ3, λ4 which is shown
in the equation (3.33). From this relation, we can write x3 in terms of x1 and
x2 by using the relation in the equation (3.33), and the dimensionless variable in
equation (3.13). We have

x3f =DH2

a2C
,

x2fx3f =D(ϕ)V (ϕ)
C(ϕ)

= D0e
λ2ϕXλ3V0e

λ4ϕ

3C0eλ1ϕ

=D0V0X
λ3e(λ2−λ1+λ4)ϕ

3C0
= D0V0

3C0
Xλ3e−λ3λ4ϕ

=D0V0

3C0

(
X

eλ4ϕ

)λ3

= D0V
1+λ3

0

3C0

(
X

V (ϕ)

)λ3

. (3.69)

Using X = ϕ′2/2a2 and define r0 = D0V
1+λ3

0 /3C0, we obtain

x2fx3f =r0

(
ϕ′2/2a2

3H2x2f/a2

)λ3

= r0

(
ϕ′2

6H2x2f

)λ3

=r0

(x2
1f

x2f

)λ3

, (3.70)

x3f =r0
x2λ3

1f

x1+λ3
2f

. (3.71)

One can see that r0 is a constant and controls magnitude of x3f for a given value
of x1f and x2f . Therefore, number of independent dimensionless variables or di-
mensions of phase space of this system reduced to two consisting of x1 and x2.
Now we discuss the disformal fixed points in this two dimensional phase space.
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Substituting the relations in equations (3.33) and (3.71) into the equation (3.18),
we obtain a long polynomial equation as follows

x1f,N =1
4

[
−
√

2
3
x1f (

√
6λ4 + 6x1f )

(
6λ3 + r0

(√2
3

(λ2
4 + 3)x1f + λ4x

2
1f + λ4

)
x2λ3

1f

×
(√

2
3
λ4x1f + x2

1f + 1
)−(λ3+1)(

λ3
(
6r0x

2λ3+2
1f (

√
2
3
λ4x1f + x2

1f + 1)−(λ3+1)

+ 2
)

+ 1
)

− 6r0
(
λ1 − (λ3 + 1)λ4

)
x2λ3+2

1f

(√
2
3
λ4x1f + x2

1f + 1
)−(λ3+1)

× (λ3(6r0x
2λ3+2
1f

(√
2
3
λ4x1f + x2

1f + 1
)−(λ3+1)

+ 2) + 1) + λ1
(
6(3λ3 + 2)

× r0x
2λ3+2
1f

(√
2
3
λ4x1f + x2

1f + 1
)−(λ3+1)

− 1
)((

1 − 6λ3r0x
2λ3+2
1f

×
(√

2
3
λ4x1f + x2

1f + 1
)−(λ3+1))

(1 − 6(2λ3 + 1)r0x
2λ3+2
1f

×
(√

2
3
λ4x1f + x2

1f + 1
)−(λ3+1)

) − (λ3 + 1)r0(
√

6λ4 + 6x1f )x2λ3+1
1f(√

2
3
λ4x1f + x2

1f + 1
)−(λ3+1)(

λ3(6r0x
2λ3+2
1f

(√
2
3
λ4x1f + x2

1f + 1
)−(λ3+1)

+ 2) + 1
))−1

− 2
(
2(λ2

4 + 3)x1f + 2
√

6λ4x
2
1f +

√
6λ4

))]
= 0 . (3.72)

It is noticed that, the highest degree of x1f in the above equation is 6 + 4λ3.
Since it is quite difficult to solve this polynomial equation for x1f , we should solve
this equation for r0 instead of x1f . However, in order to connect our results with
the observational bound, we express r0 in terms of Ωdf and ωdf by inserting the
equation (3.41) into the equation (3.18). In such a way, we obtain

r0 =r01 = 1
6λ3

(1 − ωdf

1 + ωdf

)1+λ3

, (3.73)

r0 =r0± = 1
2
√

3

(1 − ωdf

1 + ωdf

)1+λ3

×
λ1

√1 + ωdf ± 2ωdf

√
3Ωdf

λ1

√
3(1 + ωdf ) ± 6(2λ3 + 1)ωdf

√
Ωdf

. (3.74)

From the above equations, the fixed points in Table 1 can be expressed in
terms of r0 as shown in Table 3. It is noticed that when λ3 = 0 the fixed points in
the class II reduce to the fixed point in [96].

The fixed points in this case is quite complicate to perform the direct
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Table 3 This table shows the fixed points of disformal scaling solutions
in term of the observable parameters ωd and Ωd model which is
separated into two class.

class x1f x2f r0

I+
√

(1+ωdf )Ωdf√
2

1
2 (1 − ωdf ) Ωdf r01

I− −
√

(1+ωdf )Ωdf√
2

1
2 (1 − ωdf ) Ωdf r01

II+
√

(1+ωdf )Ωdf√
2

1
2 (1 − ωdf ) Ωdf r0+

II− −
√

(1+ωdf )Ωdf√
2

1
2 (1 − ωdf ) Ωdf r0−

A
B
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0.0
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Figure 1 This figure shows the evolutions of dark matter and dark en-
ergy density parameters from the past to the present epoch
which is computed from the ΛCDM model. Line A is the den-
sity parameter of the dark matter and line B is the density
parameter of the dark energy

stability analysis analytically. Hence, we will operate the stability analysis by using
numerical analysis instead of analytical analysis and show the regions of the stable
and unstable of the fixed points which correspond to the observable parameters
(Ωdf , ωdf ). However, before going to the stability analysis, in order to compare our
analysis with the standard model of cosmology, we show a plots of the evolution
of the matter energy density parameter Ωm and dark energy density parameter
Ωd from the ΛCDM model in Figure 1. This figure shows the value of Ωm drops
down from 1 to 0.3 and the value of Ωd increases from ∼ 0 to ∼ 0.7 from the past
to the present day and value of ωd is ∼ −0.99 from the past to present day. The
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Figure 2 The regions I (λ3, λ1) = (1, 100) and II (λ3, λ1) = (20, 1) are the
stable regions of the fixed points for the class I+. The fixed
point is saddle out side these regions.

standard model of cosmology (ΛCDM model) and the cosmological observations
[97] suggest that the values of dark energy density parameter and the equation of
state parameter are (Ωd, ωd) ∼ (0.69,−0.99). We use these values to connect our
analysis with the observational bound by setting (Ωd, ωd) of the fixed point to be
∼ (0.69,−0.99).

Now, we analyze the case of the phase space which is dimension reduces to
two by a relation given in equation (3.71) called reduced phase space. There exist
two classes of the fixed points as shown in table 3. To perform stability analysis,
we first linearlize the equation (3.72) and (3.19) around the fixed point and then
compute corresponding eigenvalues. However, the expressions for the eigenvalues
are very complicate. Thus, we evaluate the values of the eigenvalues numerically
by inserting the numerical values of parameters and fixed points from Table 3 into
the analytic expression of the eigenvalues. For the fixed points in class I, the fixed
points are saddle and covers for entire region of the values of −1 < ωdf < 0 and
0 < Ωdf < 1 when λ1 = λ3 = 1 (this class cannot exist when λ3 = 0). We have
shown the stable region for the class I+ from the Table 3 in the Ωdf − ωdf plane in
Figure 2. For this plot, we use the values of (λ3, λ1) = (1, 100) and (20, 1). The
regions I and II shown in Figure 2 are stable. However, the fixed points are saddle
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Figure 3 The regions I and II are the stable regions of the fixed points
for the class I−.The fixed point is saddle out side these regions.

out side these regions. Similarly as class I+, we show the stable regions for the
class I− in Figure 3 and we set the values of (λ3, λ1) = (1, 500) for region I and
(λ3, λ1) = (20, 1). The regions I and II in Figure 3 represent the regions of stable
fixed points, so that the fixed points become saddle points out side these regions.
According to the Figures 2 and 3, if λ1 is large enough, the fixed points stable
within the region Ωdf ∈ [0.7, 1) and ωdf ∈ (−0.99,−0.97).

Now we consider the case λ3 = 0 which corresponds to the fixed points
in class II. This class consists of two cases of the fixed points which are class II+

and II−. We consider class II+ which is saddle fixed point. We use the numerical
calculation to perform the stability analysis and show the saddle regions in Figure
4. The saddle regions of this class are increasing when λ1 increases. This figure
shows the regions I, II and III which are saddle regions and set the values of
(λ1, λ3) = (2, 0), (5, 0), (10, 0). The fixed points are stable outside these regions
and become saddle points within the region Ωdf ∈ [0.7, 1) and ωdf ∈ (−0.99,−0.97)

when λ1 ≫ 1 and λ3 ≫ 1. The entire region II overlaps with a part of region III
and the whole of region I overlaps with a part of region II.

Now we consider the case of λ3 ̸= 0, this case cannot exist for the fixed
point in class I but occurs for the fixed points class II. We use the numerical method
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Figure 4 This figure show the saddle regions I, II and III of the fixed
point class II+. Out side these regions the fixed point is stable.
In this numerical we have used (λ1, λ3) = (2, 0), (5, 0), (10, 0)

to perform stability analysis for the fixed points class II+ and II+. Fixed points in
this class are stable for a wide range of λ1 when −1 < ωdf < 0 and 0 < Ωdf < 1.
Figures 5 and 6 show regions I, II and III which are saddle points. For these figure
we set the values of (λ3, λ1) = (1, 1), (1, 5), (5, 1). It can be seen in the figures that
the fixed points are stable outside these regions. For this case the same values of
λ1, λ2, λ3 can lead to different stable fixed points at late time.

Again, we consider for the case λ3 = 0 the equation (3.74) becomes

r0± = 1 − ωdf

6(1 + ωdf )
. (3.75)

One can see that, r0± or x3f takes a single value for a given value of ωdf . From the
equations (3.40) and (3.41) and a fixed value of λ4, we obtain

√
Ωdf =


λ2

4(ωdf +1)+
√

λ2
4(ωdf +1)(λ2

4(ωdf +1)−12ωdf)−6ωdf

6ω2
df

for negative λ4,

−
−λ2

4(ωdf +1)+
√

λ2
4(ωdf +1)(λ2

4(ωdf +1)−12ωdf)+6ωdf

6ω2
df

for positive λ4.

(3.76)

It is noticed that, Ωdf depends on λ4 and takes a single value for a given
λ4 where ωdf = 0. Nevertheless, the equation (3.76) shows that when ωdf ̸= 0, Ωdf
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Figure 5 The regions I, II and III are the saddle regions of the fixed
point for the class II+. The fixed point is stable out side these
regions.

exists two possible values for a given value of λ4. One of the possible value of Ωdf

is positive whilst another one is negative. We noticed that, λ4 is a real value when
−1 < ωdf < 0. In addition, if 0 < ωdf < 1 and the values of λ4 and ωdf are chosen
as same as the first value of Ωdf , the value of Ωdf will be larger than one. Thus, for
a given value of λ1, λ2, λ4 and r0 the only one fixed point lies inside the physical
phase space when λ3 ̸= 0. Using similar analysis for the case where λ3 = 0 and
−1 < ωdf < 1, the fixed points in the class I can takes a single physically relevant
value for a given λ1, λ2, λ4 and r0.

For the fixed points class II, the equation which expresses the relation
between ωdf and the parameters of the model λ1, λ3, λ4 and r0, can be computed
by writing Ωdf in the equation (3.74) in terms of ωdf using the equations (3.41).
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Figure 6 The regions I, II and III are the saddle regions of the fixed
points for the class II−. The fixed point is stable out side these
regions.

The result is

Ewdf
=

√
3
[
(1 − ωdf )2(1+λ3)

(
12ωdf + λ2

1(1 + ωdf ) − 2λ1λ4(1 + ωdf )
)

+ 36r2
0(1 + ωdf )2(1+λ3)

(
12(1 + 2λ3)2ωdf + λ2

1(1 + ωdf )

− 2λ1λ4(1 + 2λ3)(1 + ωdf )
)

− 12r0(1 − ω2
df )1+λ3

(
λ2

1(1 + ωdf )

− 2λ1λ4(1 + λ3)(1 + ωdf ) + 12ωdf (1 + 2λ3)
)]

= 0 . (3.77)

The values of ωdf which correspond to Ewdf
= 0 are the value of the ωd at the fixed

point for a given value of λ1, λ3, λ4 and r0. We first choose the value of ωdf and Ωdf

according to the observational bound, and select values of λ1 and λ3 to compute
λ4 and r0 from the equations (3.41) and (3.74). Substituting the selected value of
λ1 and λ3 and the computed value of λ4 and r0 into the equation (3.77), we see
that Ewdf

= 0 can be satisfied by the value ωdf other than the value of Ωdf that is
chosen at first time from the observational bound. This suggests that for the fixed
points class II, the same value of the parameters of the model can yield two stable
physically relevant fixed points.

In the Figures (7) and (8), we plot the equation (3.77) where r0 and λ4
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Figure 7 The plot show Ewdf
from the equation (3.77) be a function of

wdf for the fixed points class II+. For lines 1 - 7, we set (λ1, λ3) =
(1, 1), (1, 1), (5, 1), (10, 1), (5, 5), (1, 5) and (1, 20) respectively.

are calculated from the equation of state of dark energy ωdf = ω∗
df = −0.99,−0.98

and Ωdf = Ω∗
df = 0.9. The plots show that the values of ωdf are in a range

ωdf = ωs
df ∈ (−0.98, 0.15). In the cases of λ1 ∼ O(1) and λ3 ∼ O(1), ωs

df ∈ (0, 0.15)

for the fixed points in the class II+ and ωs
df ∈ (−0.98, 0) for the fixed points in

the class II−. Inserting ωs
df into the equation (3.41), we obtain the values of Ωdf

associated with ωs
df . The values of Ωdf lies within the range between 0 to 1. Using

the stability analysis mentioned above, we have found that both of the fixed points
are stable fixed points. This suggests that in the case of λ3 > 0, the fixed points
class II+ and II− can take two different physically relevant values and both fixed
points are stable for same values of the parameters of the model.

We now consider Figures 7 and 8 which refer to the fixed points class
II+ and II−. For Eωdf

= 0, the solutions of ωs
df shifts to the lower value when

λ1 increases. In contrast, the solution of ωs
df shifts to the larger value when λ3

increases. We have found that the equation of state ωs
df converges to 0 when λ3

increases. However, ωs
df does not exist when λ1 ≳ 30. This suggests that when

λ1 ≳ 30 the fixed points in the class II+ take only one physically relevant value.
From Figure 8, one can see that when λ3 increases the equation of state ωs

df shifts
toward 0. From our numerical analysis for the fixed point class II−, we have found
that when λ1 ≳ 1 the value of Ωdf which is associated with ωs

df becomes larger
than 1. However, we can reduce the value of Ωdf by increasing the value of λ3,
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Figure 8 The plot show Ewdf
from the equation (3.77) be a function of

wdf for the fixed points class II−. For lines 1-3, we have setting
(λ1, λ3)=(1,1), (5,1), and (5,5) respectively.

for instance, Ωdf < 1 when λ1 = λ3 = 5. Moreover, the fixed points in both class
II+ and II−, if Ω∗

df ≳ 0.9, the solution ωs
df cannot exist. From the above analysis,

we can summarize that, if the value of r0 and λ4 correspond to Ω∗
df ≳ 0.9 or λ1 is

sufficiently larger than one, the fixed points correspond to ωs
df cannot occur. Now

we consider the situation that the same value of the parameters of the model gives
rise to the different fixed points. We start by solving numerically the equations
(3.18) - (3.20) and setting the density parameter of each species by Ωc,Ωb,Ωr,Ωd

and ωd to be 0.27, 0.03, 10−4, 0.7 − 10−4 and −0.99 respectively. Then we plot the
evolution of Ωd and ωd shown in Figure 9 for the case λ1 = λ3 = 1 where r0 and
λ4 are computed from (Ωdf , ωdf ) = (Ω∗

df , ω
∗
df ) = (0.9,−0.99).

One can see that, if we chose the initial conditions such that the initial
value of ωd larger than ω∗

df , the Universe can evolve toward the fixed points corre-
sponding to the solution ωdf as displayed in Figures 7 and 8. Nevertheless, if the
Universe evolves toward this fixed point, the present value of ωd lies outside the
observational bound. Thus, the existence of this solution seems to encounter with
the problem. However, this problem can be avoided by setting the values of r0 and
λ4 to match up with Ω∗

df ≳ 0.9 or setting λ1 to be sufficiently larger than 1.
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Figure 9 This plot show the evolution of Ωc and ωd. For the line 1-
2, represent the evolution of Ωc and set the initial condition
for ωd same as the line 3 and 4. For the line 3-6, we set the
value of initial condition as ωd = ω∗

df = −0.89,−0.79 and −0369
respectively.



CHAPTER IV

NON-LINEAR PERTURBATION AND SPHERICAL
COLLAPSE MODEL

The evidences from the observational data indicate that currently our
Universe is in the accelerating expansion phase. In principle we can suppose that
the accelerating expansion of the Universe is driven by dark energy. One of the most
important observation in order to encourage the existence and influence of dark
energy on the structure formation is the growth of linear perturbations, for example
the ISW effect [102], the Dark Energy Survey [103], the galaxy redshift survey
[104]. The simple and useful tool for study influence of dark energy on structure
formations is the spherical collapse model. This model describes the evolution of
radius of the overdense regions using non-linear growth of matter perturbations
inside the regions. In this chapter, we study effect of disformal coupling between
dark energy and dark matter on large scale structure using spherical collapse model.
The essential process in the spherical collapse model are as follows:

In the matter dominated epoch, density contrast of matter which is the
ratio of density perturbation to background energy density grows propotional to
scale factor inside the Hubble radius. As a result, in some regions of the Universe
energy density of matter is higher than the other regions. These regions are over-
dense regions During the initial phase of matter dominated epoch, the radius of
regions defining from fixed total mass of matter inside the regions expands along
hubble expansion. However, due to the gravitational attraction of the overdensity
inside the regions, the radius of regions expand slower than the hubble expansion
rate. Consequently, magnitude of the overdensity inside the regions grows non-
linearly inside the regions, and therefore the radius of region stops expanding when
gravitational attraction from overdensity is sufficiently strong. At this phase, the
radius of regions reaches the maximum value and start to collapse. This is the turn
around phase. Nevertheless, the regions will not collapse down to an extremely
small radius due to the balance of kinetic energy and the gravitational attraction
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of matter inside the region which is the virialisation process.
From the virial theorem [106], we can express relation between the average

over time of the total kinetic energy < K > and the average over time of potential
energy < W > of the spherical collapse regions at steady state (constant moment
of inertia) as

< K >= − < W > /2, (4.1)

The virial theorem was first derived in the kinetic theory of gases and using the
vis-viva equation [107] in the nineteenth century by Rudolf Clausius. The virial
theorem was first applied to cosmology on the study of galaxies cluster [108, 109].

In this chapter we study linear and non-linear perturbation in the dark
energy model disformally couple to dark matter where the coupling term is obtained
from the Chapter III. We calculate evolution equations for the perturbations in the
Newtonian limit. From these evolution equations for perturbation, the evolution
equations for the spherical collapse can be derived. We use spherical collapse
model and cluster number counts to investigate the influence of dark energy on the
growth of structure and structure formation of the overdense regions. Based on the
results from the spherical collapse model, we compute cluster number counts of the
virialization haloes in order to distinguish the influence of disformally, conformally
coupled, non-coupled and ΛCDM models.

4.1 Density and Velocity perturbation

In this section, we review the calculation of the evolution equations for
the perturbations in matter. In the calculation, we use a new operator which
is introduced in [50] as λ−2 ≡ −H−2∇2. Hence in Fourier space we have λ =

H/k. Furthermore, we also use Newtonian limit or small scales limit λ ≪ 1

in this calculation. In this limit we can neglect time derivative of δϕ and the
metric potential Φ compare with their spatial derivative, because time derivative
are proportional to λ2.f The reason why we can neglect these terms that is the
time scale of the Universe is very large compare to the spatial variation of the
perturbations δϕ and Φ. We now rederive the non-linear evolution equations for
matter perturbation δρm and velocity perturbation vi

m where the subscript m refers
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to matter. So let us start the calculation by using the FLRW line element equation
(3.1) and the equation (2.43). We obtain

˙̄ρm = −3Hρ̄m + Q̄ ˙̄ϕ . (4.2)

where bar refers to the background quantities of the Universe. In this calculation
we consider the case C = C(ϕ) and D = D(ϕ). The coupling term Q from the
equation (2.44) becomes

Q̄ = −
4C,ϕDX − C

[
C,ϕ − 2D(3ϕ̇H + V,ϕ) + 2D,ϕX

]
2C
[
C +D(ρ̄m − 2X)

] ρ̄m. (4.3)

We define density contrast as δm = δρm/ρ̄m. We compute the perturbation equa-
tions for the matter from the equation (2.43) as

δ(∇αT
α
β ) = −δ(Qϕ,β) . (4.4)

Here we neglect subscript m to avoid confuse between the subscript m and the
indices. In this calculation, we use line element in the Newtonian gauge also
known as the longitudinal gauge. It was advocated by V. F. Mukhanov et. al. as
[110]

ds2 = −(1 + 2Ψ)dt2 + a2(t)(1 − 2Φ)δijdx
idxj , (4.5)

where Ψ and Φ are scalar quantities. So let us begin the calculation of the equation
(4.4) by setting β = 0 and using

∇γT
α
β = ∂γT

α
β + Γα

γρT
ρ
β − Γρ

γβT
α
ρ , (4.6)

where Γα
βγ is the Christoffel symbol. The equation (4.4) becomes

δ(∇αT
α
0 ) = δ(∂αT

α
0 ) + δ(Γα

αλT
λ
0 ) − δ(Γλ

α0T
α
λ ) = −δ(Qϕ,0) . (4.7)

In this analysis, we neglect the anisotropic stress contribution in the field equation,
hence Ψ = Φ. Using the Newtonian limit, we can neglect the terms proportional to
Φ̇ and δϕ̇. Thus, we can write the perturbation of the right hand side of equation
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(4.7) as

ϕ,γQ = (ϕ̄,γ + δϕ,γ)(Q̄+ δQ)

= ϕ̄,γQ̄+ ϕ̄,γδQ+ Q̄δϕ,γ + δϕ,γδQ, (4.8)

δ(ϕ,γQ) = ϕ̄,γδQ+ Q̄δϕ,γ + δϕ,γδQ , (4.9)

δ(ϕ,0Q) = ϕ̄,0δQ+ Q̄δϕ,0 + δϕ,0δQ = ˙̄ϕδQ , (4.10)

where we neglect the term δϕ̇. The equation (4.7) becomes

δ(∇αT
α
0 ) = δ(∂αT

α
0 )︸ ︷︷ ︸

K1

+ δ(Γα
αλT

λ
0 )︸ ︷︷ ︸

K2

− δ(Γλ
α0T

α
λ )︸ ︷︷ ︸

K3

= − ˙̄ϕδQ . (4.11)

We calculate the term K1 from the above equation using the energy-momentum
tensor as follows

Tα
β ≡ (ρ̄m + δρm)UαUβ = ρmU

αUβ , (4.12)

δ(∂αT
α
β ) = ∂αδT

α
β = ∂αδ(ρmU

αUβ) = ∂α(UαUβδρm) + ∂α[ρmδ(UαUβ)] , (4.13)

δ(∂αT
α
0 ) = ∂αδT

α
0 = ∂αδ(ρmU

αU0) = ∂α(UαU0δρm) + ∂α[ρmδ(UαU0)] . (4.14)

We define the four-velocity of matter as Uα = (Ū0 − δU0, δU i) = (1 − Φ, vi) and
U i = δU i, then we obtain the first and second terms of the equation (4.14) as

UαUβδρm = UαU0δρm = Uα(−1)δρm = −Uαδρm , (4.15)

∂α(UαU0δρm) = −∂α(Uαδρm) = −(∂αU
α)δρm − Uα∂αδρm

= −(∂0U
0)δρm − (∂iU

i)δρm − U0∂0δρm − U i∂iδρm

= −[∂0(1 − Φ)]δρ− ∂iv
iδρm − δρ̇m − vi∂iδρm

= −∂iv
iδρm − δρ̇m − vi∂iδρm , (4.16)

where 1 − Φ ∼ 1 compare to the perturbation of coupling term δQ,
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∂α[ρ̄mδ(UαU0)] = (∂αρ̄m)δ(UαU0) + ρ̄m∂α[δ(UαU0)] = A3 + A4 , (4.17)

A3 = (∂αρ̄m)δ(UαU0) = (∂αρ̄m)[UαδU0 + U0δU
α]

= (∂αρ̄m)[����−UαΦ + U0δU
α]

= (∂αρ̄m)U0δU
α = (∂αρ̄m)U0δU

α = (∂αρ̄m)(−1 − Φ)δUα

= −(∂αρ̄m)δUα − (∂αρ̄m)ΦδUα = −(∂0ρ̄m)δU0 − (∂iρ̄m)δU i

= −ρ̇Φ − vi∂iρ̄m = 0 , (4.18)

where we neglect the term Φ and ∂iρ̄m = 0 ,

A4 = ρ̄m∂α[δ(UαU0)] = ρ̄m∂α[����UαδU0 + U0δU
α]

= ρ̄m∂α(U0δU
α)

= ρ̄m[(∂αU0)δUα + U0∂αδU
α]

= ρ̄m[(∂0U0)δU0 + (∂iU0)δU i + U0∂0δU
0 + U0∂iδU

i]

= ρ̄m[Φ∂0(1 + Φ) − vi∂i(1 + Φ) − (1 + Φ)(−∂0Φ + ∂iv
i)]

= −ρ̄m(1 − Φ)∂αδU
α = −ρ̄m∂αδU

α = −ρ̄m[∂0δU
0 + ∂iδU

i]

= −ρ̄m[∂0(−Φ) + ∂iv
i]

= −ρ̄m∂iv
i , (4.19)

where 1 + Φ ∼ 1 and Φ̇ ∼ 0 compare to the perturbation of coupling term δQ. We
obtain the term K1 as

δ(∂αT
α
0 ) = −δρ̇m − (∂iv

i)δρm − vi∂iδρm − ρ̄m∂iv
i , (4.20)

We calculate the term K2 from the equation (4.11) as follows

δ(Γα
αλT

λ
0 ) = Γ̄α

αρδT
ρ
0 + T̄ ρ

0 δΓα
ρα ,

Γ̄α
αρδT

ρ
0 = Γ̄α

α0δT
0
0 +����*

Γ̄α
αi = 0

Γ̄α
αiδT

i
0 = −3Hδρm , (4.21)

T̄ ρ
0 δΓα

ρα = T̄ 0
0 δΓα

0α = ρ̄mδΓα
0α . (4.22)
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The non-zero components of Christoffel connection are Γ̄0
ij = Hḡij and Γ̄i

0j = Hδi
j.

Using the perturbation of Christofel symbol as

δΓλ
µν = −ḡλβhβγΓ̄γ

µν + 1
2
ḡλα(∂µhαν + ∂νhαµ − ∂αhµν) , (4.23)

where hαβ is the metric perturbation. Then, the equation (4.22) becomes

T̄ ρ
0 δΓα

ρα = ρ̄mδΓα
0α , (4.24)

δΓα
0α = 1

2
ḡαβ(∂0hβα + ∂αh0β − ∂βh0α) − ḡαβhβγΓ̄γ

0α

= S1 − S2 , (4.25)

S1 = 1
2
ḡαβ(∂0hβα + ∂αh0β − ∂βh0α)

= 1
2

[(ḡ00∂0h00 + ḡij∂0hij) + ḡα0∂αh00 − ḡ0β∂βh00]

= 1
2
ḡ00∂0h00 + 1

2
ḡij∂0hij = −1

2
∂0Φ + δij

2a2∂0(−2a2Φδij)

= −2HΦδi
i , (4.26)

S2 = ḡαβhβγΓ̄γ
0α = ḡjkhkiΓ̄i

0j = δjk

a2 (−2a2Φδki)Hδi
j

= −2ΦHδi
i , (4.27)

δΓα
0α = 0 , (4.28)

where Φ̇ ∼ 0 compare to the perturbation of coupling term δQ. Thus, we obtain
the term K2 as

δ(Γα
αλT

λ
0 ) = −3Hδρm . (4.29)

We calculate the term K3 from the equation (4.11) as follows

δ(Γλ
α0T

α
λ ) = Γ̄λ

α0δT
α
λ + T̄α

λ δΓλ
α0 (4.30)

Γ̄λ
α0δT

α
λ = Γ̄λ

00δT
0
λ + Γ̄λ

i0δT
i
λ = Γ̄λ

i0δT
i
λ ; Γ̄λ

00 = 0 ,

= Γ̄0
i0δT

i
0 + Γ̄j

i0δT
i
j = Γ̄j

i0δT
i
j ; Γ̄j

i0 = 0 ,

T i
j = ρmU

iUj = (ρ̄m + δρm)(��̄U i + δU i)(��̄Uj + δUj)

= (ρ̄m + δρm)δU iδUj ,

δT j
i = (ρ̄m + δρm)vivj = ρmv

ivj , (4.31)
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Γ̄λ
α0δT

α
λ = Hδi

jρmv
ivj = ρmHv

ivi , (4.32)

T̄α
λ δΓλ

α0 = T̄ 0
0 δΓ0

00 = ρ̄mδΓ0
00 (4.33)

From the equation (4.23), we obtain

δΓ0
00 = �������

−ḡ0βhβγΓ̄γ
00 + 1

2
ḡ0α(∂0hα0 + ∂0h0α − ∂αh00)

= 1
2
ḡ00∂0h00 = 1

2
(−1
a2 )∂0(−2a2Φ) = Φ̇ + 2HΦ . (4.34)

We neglect the above equation compare to the coupling term δQ. Then, we obtain
the term K3 as

δ(Γλ
α0T

α
λ ) = ρmHv

ivi (4.35)

From the equations (4.20), (4.29), (4.35), the equation (4.11) becomes

δ(∇αT
α
0 ) = −δρ̇m − (∂iv

i
m)δρm − vi

m∂iδρm − ρ̄m∂iv
i
m − 3Hδρm − ρmHv

ivi

= − ˙̄ϕδQ , (4.36)

δρ̇m = −(∂iv
i
m)δρm − vi

m∂iδρm − ρ̄m∂iv
i
m − 3Hδρm − ρmHv

ivi + ˙̄ϕδQ ,
(4.37)

where ρm = ρ̄m + δρm. Dividing the above equation by ρ̄m and using

δm = δρm

ρ̄m

and δρ̇m

ρ̄m

= δ̇m +
˙̄ρmδρm

ρ̄2
m

, (4.38)

then the equation (4.37) becomes

δ̇m = −(1 + δm)∂iv
i
m − vi

m∂iδm −
˙̄ρm

ρ̄m

δm − 3Hδm − (1 + δm)Hvivi +
˙̄ϕδQ
ρ̄m

. (4.39)

Using ˙̄ρm = −3Hρ̄m + Q̄ ˙̄ϕ, we obtain

δ̇m = −(1 + δm)∂iv
i − vi∂iδm − (1 + δm)Hvivi − Q̄ ˙̄ϕδm

ρ̄m

+
˙̄ϕδQ
ρ̄m

. (4.40)
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From the above equation, we obtained the first-order differential equation for the
density perturbation. Now, we consider the equation (4.4) for β = i, we get

δ(∇αT
α
i ) = δ(∂αT

α
i ) + δ(Γα

ραT
ρ
i ) − δ(Γρ

iαT
α
ρ ) = −δ(ϕ,iQ)

= L1 + L2 + L3 = −δ(ϕ,iQ) . (4.41)

We calculate the term L1 from the above equation as follows

δ(∂αT
α
i ) = ∂0δT

0
i + ∂jδT

j
i , (4.42)

δT 0
i = δ(ρmU

0Ui) = δ(ρmUi) = Uiδρm + ρ̄mδUi = viδρm + ρ̄mvi (4.43)

= vi(ρ̄m + δρm) = viρm , (4.44)

∂0δT
0
i = ∂0(viρm) = v̇iρm + viρ̇m , (4.45)

T j
i = ρmU

jUi = (ρ̄m + δρm)(��̄U j + δU j)(��̄Ui + δUi)

= (ρ̄m + δρm)δU jδUi , (4.46)

δT j
i = (ρ̄m + δρm)vjvi = ρmv

jvi , (4.47)

∂jδT
j
i = ∂j(ρmv

jvi) = vjvi∂jδρm + ρm∂j(vjvi) . (4.48)

From the equations (4.45) and (4.48), we obtain the term L1 as

∂αδT
α
i = viρ̇m + v̇iρm + viv

j∂jδρm + ρm∂j(vjvi) , (4.49)

where ρm = ρ̄m+δρm and we neglect the subscriptm for vi and vi to avoid confusion
of the subscript m and i. Consider the term L2 from the equation (4.41), we have

Γα
ραT

ρ
i = (Γ̄α

ρα + δΓα
ρα)(T̄ ρ

i + δT ρ
i )

= Γ̄α
ραT̄

ρ
i︸ ︷︷ ︸

background

+Γ̄α
ραδT

ρ
i +

�����*
pressureless

T̄ ρ
i δΓα

αρ + δΓα
αρδT

ρ
i ,

= Γ̄α
ραδT

ρ
i + δΓα

αρδT
ρ
i (4.50)

δ(Γα
ραT

ρ
i ) = Γ̄α

ραδT
ρ
i + δΓα

αρδT
ρ
i (4.51)

Γ̄α
ραδT

ρ
i = Γ̄α

0αδT
0
i + Γ̄α

jαδT
j
i

= ����Γ̄0
00δT

0
i + Γ̄j

0jδT
0
i +

����Γ̄0
j0δT

j
i +

����Γ̄k
jkδT

j
i

= Γ̄j
0jδT

0
i = 3Hρmvi . (4.52)
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δΓα
αρδT

ρ
i = �����δΓα

α0δT
0
i + δΓα

αjδT
j
i (4.53)

= δΓ0
0jδT

j
i + δΓk

kjδT
j
i

∼ 0 , (4.54)

where we neglect the terms δΓ0
0j and δΓk

kj compare to the coupling term δQ. We
compute the term L3 from the equation (4.41) as follows

Γρ
iαT

α
ρ = Γ̄ρ

iαT̄
α
ρ︸ ︷︷ ︸

background

+Γ̄ρ
iαδT

α
ρ + T̄α

ρ δΓ
ρ
iα + δΓρ

iαδT
α
ρ ,

δ(Γρ
iαT

α
ρ ) = Γ̄ρ

iαδT
α
ρ + T̄α

ρ δΓ
ρ
iα + δΓρ

iαδT
α
ρ , (4.55)

Γ̄ρ
iαδT

α
ρ = Γ̄ρ

i0δT
0
ρ + Γ̄ρ

ijδT
j
ρ

= ����*
Γ̄0

i0 = 0
Γ̄0

i0δT
0
0 + Γ̄j

i0δT
0
j + Γ̄0

ijδT
j
0 +����*

Γ̄k
ij = 0

Γ̄k
ijδT

j
k

= Γ̄j
i0δT

0
j + Γ̄0

ijδT
j
0 = (Hδj

i )(vjρm) + ( ȧ
a
ḡij)(−ρmv

j)

= ρmHvi − ρmHvi = 0 , (4.56)

T̄α
ρ δΓ

ρ
iα = T̄ 0

0 δΓ0
i0 = −ρmδΓ0

i0 = −ρm

(1
2
ḡ00∂ih00

)
= −ρm∂iΦ , (4.57)

δ(Γρ
iαT

α
ρ ) = −ρm∂iΦ . (4.58)

Consider right hand side of the equation (4.41) and using the equation (4.9), we
have

Qϕi = (Q̄+ δQ)δϕ,i,

δ(ϕ,iQ) = Q∂iδϕ . (4.59)

From the equations (4.49), (4.52), (4.58) and (4.59), the equation (4.41) becomes

δ(∇αT
α
i ) = ρmv̇i + viρ̇m + vivj∂jδρm + ρm∂j(vivj) + 3Hρmvi + ρm∂iΦ (4.60)

= −Q∂iδϕ , (4.61)

ρmv̇i = −viρ̇m − vivj∂jδρm − ρm∂j(vivj) − 3Hρ̄mvi − ρm∂iΦ −Q∂iδϕ .
(4.62)
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Using the equation (4.2) and (4.36), we obtain

ρ̇m = ˙̄ρm + δρ̇m = −3Hρ̄m + Q̄ ˙̄ϕ− (ρ̄m + δρm)∂jv
j − vj∂jδρm − 3Hδρm + ˙̄ϕδQ

= −3Hρm − ρm∂jv
j − vj∂jδρm + ˙̄ϕQ . (4.63)

Inserting the equation (4.63) into the equation (4.62), we get

ρmv̇i = −vi[−3Hρm − ρm∂jv
j − vj∂jδρm + ˙̄ϕQ]

− ρm∂j(vjvi) − viv
j∂jδρm − 3Hρmvi + ρm∂iΦ −Q∂iδϕ

= −ρmv
j∂jvi − ρm∂iΦ − viQ

˙̄ϕ−Q∂iδϕ . (4.64)

Substituting vi = a2vi and

v̇i = a2v̇i + 2aȧvi = a2v̇i + 2a2 ȧ

a
vi

= a2(v̇i + 2Hvi) (4.65)

into the equation (4.64) and divided by ρ̄m, we get

v̇i = −
(
2H + Q ˙̄ϕ

ρ̄m

)
vi − vj∂jv

i − 1
a2

(
∂iΦ + Q

ρ̄m

∂iδϕ
)

= −(2H + Q̃0
˙̄ϕ)vi − vj∂jv

i − 1
a2

(
∂iΦ + Q̃0∂iδϕ

)
, (4.66)

where Q̃0 = Q/ρ̄m. From the equations (4.40) and (4.66), we then have the first
order differential equations for non-linear density and velocity perturbations. We
show results of the calculation for perturbation of the coupling term Q from the
equations (2.44) - (2.46) as follows

δTm = −δρm, δTmp = 2X̄δρm, (4.67)

δ(Tmp2ϕ) = −2X̄δρm( ¨̄ϕ+ 3H ˙̄ϕ) + 2X̄ρ̄m∇2δϕ , (4.68)

δθ1 = ¨̄ϕδρm − ˙̄ϕHρvivk, δθ2 = −8ρ̄mX̄
¨̄ϕΦ + 2X̄ ¨̄ϕδρm , (4.69)

δθ3 = ˙̄ϕ[δρ̇m + ∂i(viδρm) + ρ̄m∂iv
i + 3Hδρm] , (4.70)

δθ4 = 8ΦX̄(2 ¨̄ϕ ˙̄ρm) − ˙̄ϕ( ˙̄ϕ ¨̄ϕδρm + X̄δρ̇m) , (4.71)

δ(Tmpθ5) = 4X̄2 ¨̄ϕ(6ρ̄mΦ − δρm) . (4.72)
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However, we express the explicit calculation for the perturbations of Tm, Tmp,
Tmp2ϕ and θ1 − θ5 in appendix A.

Next section, we use Newtonian limit and the assumption of top hat model
to derived the second order differential equation of the non-linear density pertur-
bation and the relation between matter density contrast and its radius.

4.2 Evolution equations for the perturbation on small scales

In order to calculate the perturbations of the coupling term Q from the
equation (3.7), we consider the case where C = C(ϕ) and D = D(ϕ). From the
metric perturbation in Newtonian gauge given in the equation (4.5) the Einstein
theory converges to Newtonian limit on small scales, such that component µν = 00

of the perturbed Einstein equation becomes

∂i∂
iΦ ≡ ∇2Φ ≃ 1

2
δρm. (4.73)

On sufficiently small scales we have ∇2δϕ ≫ δϕ̈,Hδϕ̇, where δϕ is the perturbation
of ϕ. Then, the equation (2.37) becomes

∇2δϕ = δQ . (4.74)

The perturbation of coupling term δQ appears in the equations (4.74) and (4.40)
can be computed by applying the small scales limit to the equation (2.44). Then
we obtain

δQ

ρ̄m

= D ˙̄ϕ
C

[δ̇m + (1 + δm)∂iv
i
m + vi

m∂iδm] + Q̃0δm . (4.75)

Substituting the equation (4.75) into the equation (4.40), we then have

δ̇m = −(1 + δm)∂iv
i
m − vi

m∂iδm . (4.76)

Inserting the equation (4.76) into the equation (4.40), we get

δQ

ρ̄m

= Q̃0δm . (4.77)
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One can see from the above equation that, the δ̇m can be eliminated and therefore
the equation (4.74) becomes

∇2δϕ = Q̃0δρm . (4.78)

We use the evolution of top hat model in order to obtain a correct explanation of
the spherical collapse model (see the detail in appendix B and [105]). Applying the
assumption of top hat model to the equations (4.66) and (4.76), then differentiating
both equations with respect to time t, the term ∂iv

i
m can be eliminated. We obtain

δ̈m = −(2H + Q̃0
˙̄ϕ)δ̇m + 4

3
δ̇2

m

1 + δm

+ (1 + δm)(∇2Φ + Q̃0∇2δϕ) . (4.79)

Here we use the assumptions that mass of dark matter particles in the collapsing
regions and the conservation of the number of dark matter particles in the overdense
regions do not differ from the background. In order to connect the equation (4.79)
to the evolution of the radius r of the region which contains dark matter overdensity
δm, these assumptions are applied. Hence, we get [105]

1 + δm = (1 + δm,in)
(a
r

)3
, (4.80)

where δm,in is the density contrast of matter in the collpase regions and we set the
initial conditions as r = a and δm = δm,in ≪ 1. The above relation implies that
the overdense regions of radius r will collapse when δm → ∞.

4.2.1 Spherical collapse

In order to study evolution of spherical collapse regions, we use

C = eλ1ϕ , D = M−4
d eλ2ϕ , V = M4

v eλ3ϕ , (4.81)

where λ1, λ2 and λ3 are the dimensionless constant parameters, while Md and Mv

are the constant parameters with dimension of mass. In this computation, we
define the dimensionless variables as

x2
1 ≡ ϕ̇2

6H2 , x2 ≡ V

3H2 , x3 ≡ DH2

C
. (4.82)
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From [96, 111], we can write the evolution equations for the background Universe
in the form of autonomous equations show below

x′
1 = 1

2

[
x1(3x2

1 − 3x2 + 1) − 2(
√

3/2λ3x2 + 2x1)
]

−
√

3
2
√

2
(x2

1 + x2 − 1)λ1(12x2
1x3 − 1) − 6x3(λ2x

2
1 −

√
6x1 − λ3x2)

1 − 3x3(3x2
1 + x2 − 1)

,(4.83)

x′
2 = x2(

√
6λ3x1 + 3x2

1 − 3x2 + 3) , (4.84)

x′
3 = −x3[3x2

1 +
√

6(λ1 − λ2)x1 − 3x2 + 3] , (4.85)

where a prime denotes derivative with respect to number of e-folding N = ln a. The
equations (4.83) - (4.85) can completely describe the evolution of the background
Universe in principle. We have used the relation between density parameter of
dark matter Ωm and dimensionless parameters x1 and x2 in the derivation of the
equations (4.83) - (4.85) as

1 = x2
1 + x2 + Ωm . (4.86)

From the equation (4.82), we can write x3 in terms of x2 as

x3 =
DM2

pH
2

C
=
M2

pH
2

M4
d

e(λ2−λ1)ϕ/Mp

=
M2

pH
2
0E

2

M4
d

e(λ2−λ1)ϕ/Mp =
M2

pH
2
0E

2

M4
d

exp
[

(λ2 − λ1)
λ3

λ3ϕ

Mp

]

=
M2

pH
2
0E

2

M4
d

(
eλ3ϕ/Mp

)(λ2−λ1)/λ3

=
M2

pH
2
0E

2

M4
d

(
3M2

pH
2
0

M4
v

E2x2

)(λ2−λ1)/λ3

, (4.87)

where E ≡ H/H0 and H0 is the current value of the Hubble parameter. In or-
der to avoid confusion, reduced planck mass is restored into the equation (4.87).
We have chosen Md = Mv ≃ 1/0.55meV [27]. From the observations, we have
M2

pH
2
0 ≃ 2.7 × 10−47GeV 4 ≃ 27meV 4. The equations (4.83) - (4.85), (4.87) and

evolution equation for E form complete set of evolution equations for the back-
ground Universe, so that the evolution of the background Universe is described
by x1, x2 and E. Since the evolution of E is required to calculate cluster number
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counts in the next section, we solve the evolution equations for x1, x2 and E in-
stead of x1, x2 and x3. In this calculation, we use cosmic time t instead of conformal
times τ . Then, we have

H2 ≡ ( ȧ
a

)2 = 1
3

[ρm + 1
2
ϕ̇2 + V (ϕ)] . (4.88)

In order to compute the evolution equation for E, we differentiate the equation
(4.88) with respect to N to yield

E ′

E
= Ḣ

H2 = 3
2

(x2 − 1 − x2
1) . (4.89)

To numerically solve evolution equations for the background Universe, we set initial
conditions for dark energy ωd by requiring that the equation of state parameter of
dark energy to lies within the range −1 < ωd < −0.9 and Ωd = x2

1 +x2 takes value
0.7. The initial values for E is set such that E = 1 at present. We now turn to
discuss the evolution of the background Universe. From the equation (4.82), we
can write the coupling term Q̃0 in terms of dimensionless variables as

Q̃0 = λ1 − 6 (2λ1 − λ2)x3x
2
1 − 6λ3x2x3 − 6

√
6x3x1

6 (1 − 3x2
1 − x2)x3 + 2

. (4.90)

Inserting the equation (4.90) into the equation (4.2), we have

ρ̇m + 3H
(

1 −
√

2
3
Q̃0x1

)
ρm = 0 . (4.91)

It can be seen from the equation (4.86) that during the matter dominated epoch,
we have x1, x2 ≪ 1. Hence the equation (4.90) becomes

Q̃0 = λ1

2 + 6x3
. (4.92)

This equation suggests that during the matter dominated epoch, the influence
of conformal coupling which is quantified by λ1 is suppressed by the amplitude of
disformal coupling which is quantified by x3. The equation (4.87) gives x3 ∼ E ≫ 1

during the matter dominated epoch when 0 < λ1, |λ2|, |λ3| ≲ 1 and Md ∼ 1meV .
The effect of conformal coupling can be strongly suppressed by disformal coupling
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Table 4 This table shows values of parameters λ1, λ2 and λ3 for each
model.

λi

Model
A B C D E F

λ1 0.1 0.1 0.1 0.1 0 -
λ2 0 0 -2 -1 0 -
λ3 -1 -1 -1 -0.1 -1 -

conformal disformal uncoupling ΛCDM

as same as the magnitude of coupling during the matter dominated epoch. In
addition to the suppression due to the disformal coupling, when dark energy slowly
evolves, i.e., x1 ≪ 1 the effect of coupling term in the equation (4.91) can be
reduced. The magnitude of x1 depends on λ3 which mainly controll potential
slope of dark energy. The disformal coupling can lead to a large magnitude of the
coupling compared with conformal coupling at late time while the coupling can
be negligible during the matter dominated epoch. From the equation (4.90), for
the case λ3 < 0 when x2 ∼ 0.7 and x3 ∼ 1 the third term in the numerator can
enhance the magnitude of coupling at late time. During dark energy and dark
matter dominated epoch, for the pure conformally coupled model the equation
(4.90) becomes Q̃0 = λ1/2. Thus, if λ1 ∼ 1, the evolution of the Universe during
the matter dominated epoch may become unphysical. If λ1 ∼ 1 and ρd ≪ ρm

where ρd is the energy density of the dark energy, the last two terms on the LHS
of the equation (2.37) will be smaller than the coupling term on the RHS of this
equation. Therefore, the external force Q0 will strongly drive the dark energy field
ϕ, consequently matter dominated epoch will stop quickly and the acceleration
epoch cannot start as it should be. However, even though λ1 > 1, the universe
still evolve suitably if ρd is not too small compared with ρm during the matter
dominated epoch. This situation exists when dark energy starts scaling solution
during the matter dominated epoch in the quintessence model with the exponential
potential [112]. For this case, the dark energy in the matter dominated epoch can
contribute to the spherical collapse and cluster number counts [113]. In this work,
we assume that the dark energy slowly evolve through the whole evolution of the
Universe. Hence, ρd ≪ ρm during the matter dominated era.
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Figure 10 Plots of ρ̃m ≡ a3ρm/ρm0 as a function of redshift z. The lines
A, B, C, D, and F represent the models A, B, C, D and F in
table 4 respectively.

In order to study the influences of the coupling term Q̃0 on the evolution
of ρm, we plot the evolution of ρ̃m/ρm0 ≡ a3ρm/ρm0 in Figure 10 where ρm0 is
the present value of ρm. One can see from the plot that ρm ∝ 1/a3 when coupling
disappears. For a fixed ρm0, ρm decreases when λ1 and −λ2 increase for λ3 = −1 at
a given redshift because the coupling term Q̃0 increases in this situation. It can be
seen that the coupling term Q̃0 increases when λ1 increases. Corresponding to the
equation (4.87) that for negative λ2, λ3 can enhance x3 because 3M2

pH
2
0E

2x2/M
4
v >

1 at late time. It follows from the equation (4.90), for the case λ3 = −1 the third
term in the numerator of this equation can give a dominant contribution due to
an enhancement of x3 when −λ2 increases. From the equation (4.87), the coupling
term Q̃0 can become negative because a large contribution of the fourth term in the
numerator of the equation (4.90). x3 can enhance by increasing λ3 from negative
value toward zero at late time. In the Figure 10, when Q̃0 becomes negative, ρm

decay faster than a−3 as shown by line D. The values of parameters λ1, λ2 and λ3

for each model show in table (4).
Now we turn to study the effect of the disformally and conformally coupled

models on the growth of density perturbations. Inserting the equations (4.73) and
(4.78) into the equation (4.79) and using the equation (4.82), we obtain second
order differential equation of the matter density contrast in terms of dimensionless
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Figure 11 Plots of δm/a as a function of redshift z. The values of λ1, λ2
and λ3 for each line are similar to those of the Figure (10).
We set δm/a = 1 initially for all cases.

variables x1, x2, δm and Q̃0 as follows

δ′′
m = −

(1
2

(1 + 3x2 − 3x2
1) +

√
6Q̃0x1

)
δ′

m + 4
3

(δ′
m)2

1 + δm

+3
2

(1 − x2
1 − x2)(1 + δm)(1 + 2Q̃0

2
)δm , (4.93)

and the linearized version of the above equation is

δ′′
m = −

(1
2

(1 + 3x2 − 3x2
1) +

√
6Q̃0x1

)
δ′

m

+3
2

(1 − x2
1 − x2)(1 + 2Q̃0

2
)δm . (4.94)

Since Q̃0 during the matter dominated epoch obeys the estimation given in the
equation (4.92), for the case where x3 = 0, i.e. the case of pure conformally
coupled, we obtain the growing solution of the equation (4.94) as

δm ∝ epN , where p = −1
4

+ 1
4

√
25 + 12λ2

1 . (4.95)

This equation shows that during the matter dominated epoch the conformally cou-
pled model can enhance the growth of δm. In contrast, for the case of disformally
coupled model the enhancement disappear as shown in Figure 11. It can be seen in
this plot that the ratios δm/a are not different for disformally coupled and uncou-
pled models during matter dominated epoch, because Q̃ is suppressed by disformal
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Figure 12 Plots of δc as a function of collapsing redshift zc. The val-
ues of λ1, λ2 and λ3 for each line are similar to those of the
Figure (10).

coupling in the disformally coupled models. However, the ratio δm/a for the con-
formally coupled is larger than the uncoupled model at any given redshifts during
the matter dominated epoch. At late time, the ratio δm/a for the disformally cou-
pled models can decrease slower than that of the uncoupled and pure conformally
coupled models, which agrees with [27]. For the coupled models at late time, the
decreasing rate of the ratio δm/a depends on the coupling term Q̃0

2 which controls
the growing rate of δm in the equation (4.94). One can see in the Figure 11 that
at late time the decreasing rate of the ratio δm/a depends on λ1, λ2 and λ3.

In order to study spherical collapse in the disformally coupled models,
we define δc which is extrapolated linear density contrast at collapse redshifts.
We compute this quantity by numerically solving the equation (4.93), and then
finding the relation between collapse redshifts (the value of redshift at δm → ∞)
and the initial conditions for δm which lead to collapse at that redshift. For this
computation, we vary the initial value of δm within the range δm ≲ 10−3 and fix
the initial redshift at 105. Therefore, we can assume that δm obeys the linear
evolution equation given in the equation (4.94). Hence, to calculate δc, we can set
δ′

m = δm at the initial time. Solving the equation (4.94) from the initial redshift
to the collapsing redshift zc using the initial value of δm that leads to the collapse
of the overdense regions at redshift zc. We obtain the extrapolated linear density
contrast at collapsing redshift zc. We also plot δc as a function of redshift z in



62

Figure 12. It can be seen in the plot that the enhancement of decay rate of δc at
late time is a result of increasing disformal coupling term and the higher growth
rate of density perturbation of dark matter for the model of disformally coupled.
The less amount of density perturbation is needed for collapse when the growth
rate is large. This suggests that the overdense regions are able to efficiently collapse
due to the disformally coupled at late time. Using the approximation ωd = −1,
the gravitational potential for dark energy is given by [114]

Ud = −4πGMρd

5
r2 , (4.96)

where M ≡ 4πρmr
3/3 is the total mass of dark matter inside spherical collapsing

regions. For a system with potential of the form U ∝ rp and the kinetic energy
K, the virial theorem can be expressed in the general form as K = pU/2 [115].
Thus, we can compute overdensity for dark matter at virialization phase δvir using
nonlinear overdensity of dark matter as a function of redshift to compute max-
imum radius and redshift at turn around. Then, combining the virial theorem
and the conservation of energy, we obtain a relation between potential energies of
the overdense regions at turn-around phase and at the time when virialization is
reached as follows

Um,ta + Ud,ta = 1
2
Um,vir + 2Ud,vir , (4.97)

where subscript ta refers to turn around, Um = −3
5

GM2

r
is the gravitational po-

tential energy of dark matter. From the equation (4.97), we have used the fact
that at turn around kinetic energy of the overdense regions Km,ta equal to zero.
We have also used Km,vir = −Um,vir/2 and Kd,vir = Ud,vir to obtain the equation
(4.97). From the equation (4.97) and the gravitational potential for dark energy
given in equation (4.96), we obtain

ρmr
2
ta + ρdr

2
ta = 1

2
ρmr

2
vir + 2ρdr

2
vir . (4.98)

The overdensity of the forming cluster at turn around is ζ =
(

ρm

ρbg

)
ta

where ρbg is
the matter energy density of the background universe. To calculate the overdensity
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for dark matter at virialization, we defined

η = rvir

rta

and θ =
(
ρd

ρm

)
ta

. (4.99)

To obtain a relation between η and θ, we used(
ρd

ρm

)
vir

= θη3 . (4.100)

From the equation (4.98) and the above relation, we obtain

4θη3 − 2η(1 + θ) + 1 = 0 . (4.101)

Therefore, we obtain the overdensity for dark matter at virialization [114] as follows

δvir = ρm,vir

ρbg,vir

= ζ

η3

( 1 + zta

1 + zcoll

)3
. (4.102)

We also plot the overdensity for dark matter at virialization in Figure 13. It can
be seen in this plot that there is no significant difference between the conformally
coupled and uncoupled models and the overdensity for both cases are larger than
that for the disformal coupling and ΛCDM models. The overdensity can be sup-
pressed in the disformally coupled models compared with the conformally coupled
and uncoupled models at virialization. This is a result of the low overdensity at
turn around for the disformally coupled model.

4.2.2 Cluster number counts

As mentioned in the introduction, cluster number counts can be used
to study influence of dark energy to spherical collapse of overdense regions. In
this section, we use Press-Schechter/Sheth-Torman formalism to estimate cluster
number counts and study influence of the disformally coupled on the collapse of
overdense regions. Let us begin the calculation by using the volume fraction as
[112]

f =
∫ ∞

δL

P (δL, R)dδL = 1
2

erfc[ δc√
2σ

] , (4.103)
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Figure 13 Plots of δvir as a function of virialized redshift zvir. The
values of λ1, λ2 and λ3 for each line are similar to those of the
Figure (10).

where Gaussian distribution P (δL, R) = e−σ2
L/2σ2

/
√

2πσ, δL is linear density con-
trast and both σ and δL are redshift dependent. Differentiating the equation
(4.103) with respect to the σ, we obtain

df

dσ
= 1

2
d

dσ
erfc

[ δc√
2σ

]
= −1
σ

√
2π

(δc

σ

)
exp

( δ2
c

2σ2

)
. (4.104)

For the Press-Schechter formalism, the mass function describing the comoving
number density of the collapse regions with range of mass between M to M + dM

is given by

n(M)dM = 2 ρ̄
M

df

dσ

dσ

dM
dM

= −
√

2
π
ρ̄m

(δc

σ

) d ln σ
d lnM

exp
[

− δ2
c

2σ2

]dM
M2 , (4.105)

where parameter σ is the variance in spheres of radius R. The parameter σ can be
approximately calculated from [116]

σ(R, z) = σ8
( R

8h−1Mpc

)−γ(R)
D(z) . (4.106)
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Figure 14 Plots of dV ≡ (dV/dZ)/(dV/dZ)ES as a function of redshift z.
The values of λ1, λ2 and λ3 for each line are similar to those
of the Figure (10).

Here, the growth factor D(z) ≡ δm(z)/δ(0) and δ(0) is the linear density contrast
of matter perturbation at present and γ in the above equation is

γ(R) = (0.3Ωmh+ 0.2)
[
2.92 + log10

( R

8h−1Mpc

)]
. (4.107)

However, using the assumption of ellipsoidal collapse of halo, the obtained mass
function can fit well with N-body simulation for ΛCDM model compared with the
assumption of spherical collapse of halo in Press-Schechter formalism. From the
work [117], the authors have derived the mass function called Sheth-Tormen mass
function which is given by

n(M)dM = −0.2709
√

2
π
ρ̄m

d ln σ
d lnM

[
1 + 1.1096

(δc

σ

)0.6
]

exp
[

− 0.707
2

(δc

σ

)2
]
dM

M2 .

(4.108)
From the equation (4.108), we can compute cluster number counts per redshift

with mass M ≥ Mmin as

dN

dz
= fsky

dVe

dz

∫ ∞

Mmin

n(M)dM , (4.109)

where fsky is the observed sky fraction, dVe/dz ≡ 4πr2(z)/H0E(z) is the comoving
volume element per unit redshift and r(z) is the comoving distance.

To study the influence of disformal coupling term on the cluster number
counts, we plot (dVe/dz)/(dVe/dz)EdS and δc/σD(z) in Figures 14 and 15 respec-
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Figure 15 Plots of δc/(σ8D(z)) as a function of redshift z. The values
of λ1, λ2 and λ3 for each line are similar to those of the Fig-
ure (10).

tively. Here, (dVe/dz)EdS is the comoving volume element per unit redshift for the
model of Einstein-de Sitter. It can be seen from the Figure 14 that due to large
magnitude of the coupling term Q̃0, dVe/dz for the disformally coupled model is
larger than the pure conformally coupled and uncoupled models at all redshifts.
However, dVe/dz for the uncoupled model is lowest at all redshifts. In the Figure
15, we plot δc/σ8D(z) in order to study the influence of disformal coupling on
δc/σD(z). In this plot, we set σ8 = 0.83 [97] for ΛCDM model and for each model,
σ8 is set such that the ratio δc/σ8D(z) equal to ΛCDM model at redshift z = 0.
Based on this setting, the value of σ8 for all models lie within the 2 − σ bound
from the result of [97]. Due to high growth rate of linear density perturbation and
low δc at late time for the disformally coupled model and δc/σ8D(z) equals to that
for ΛCDM, the ratio δc/σ8D(z) for the disformally coupled model is larger than
the pure conformally coupled and uncoupled models. The ratio δc/σ8D(z) for the
uncoupled model is lowest compared with the disformally coupled and pure confor-
mally coupled models. We now plot cluster number counts with mass M ≥ Mmin

as a function of redshifts in Figure 16, to see the effects of disformally coupling on
the collapse regions. In this plot, we use Sheth-Tormen mass function to compute
and plot the cluster number counts as a function of redshifts for each model. We
also connect the results with the galaxy surveys by using the method as presented
in [98, 99, 100] to compute Mmin(z) from limiting flux of the surveys. We set
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Figure 16 Plots of dN/dz with mass M ≥ Mmin = 1014M⊙h
−1 as a function

of redshift z. The values of λ1, λ2 and λ3 for each line are
similar to those of the Figure (10).

the limiting flux Flim = 3.3 × 10−14ergs−1cm−2 and use fsky ≃ 0.485 according to
eROSITA surveys [101] to the plot of cluster number counts in Figure 16. One can
see in the Figure 16 that, due to the large δc/σ8D(z) for the disformally coupled
model, this model can strongly suppress cluster number per redshift compared with
the uncoupled model. There is not a significant difference between the conformally
coupled and uncoupled models in this plot. The limiting mass Mmin(z) which de-
pends on E(z), luminosity distance dL, limit flux Flim controls shape of the graph
of cluster number counts. The graph of cluster number counts seem to deviate
from the bell shape because the limiting mass increases with redshift. For more
detail about the investigation of the effect of disformal coupling on cluster number
counts, we plot the difference ratio ∆dN ≡ (dN/dz)/(dN/dz)f − 1 in Figure 17
for the disformally and conformally coupled models. Here, (dN/dz)f is dN/dz for
either ΛCDM or uncoupled model. In this plot, we defined the label of each line
as follows.
Lines A1, A2, B1, B2 and EL are the difference ratio between conformally cou-
pled model A and ΛCDM model, the difference ratio between conformally coupled
model A and uncoupled model, the difference ratio between disformally coupled
model B and ΛCDM model, the difference ratio between disformally coupled model
B and uncoupled model, the difference ratio between uncoupled and ΛCDM respec-
tively. It can be seen from the Figure 17 that at high redshifts the difference ratio
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∆dN of disformally coupled model B1 and B2 are negative and become positive at
late time. The difference ratio ∆dN of conformally coupled model A1 is negative
and A2 is positive at high redshifts. It can be seen in the plot that at late time
the line A1 converges to zero and the line A2 drops down from positive to small
negative values and rapidly increases to positive values again at redshifts closed to
zero. Similarly as line A2, at high redshifts the value of difference ratio for line
EL are positive values. As mentioned above, this suggests that the conformally
and disformally coupled models can suppress the cluster number counts at high
redshifts and the strongly suppression exists in disformally coupled model. For the
coupled models, the enhancement of the cluster number counts at low redshift is
mainly effect by a large values of dV/dz. In addition, at high redshifts the clus-
ter number counts does not significantly depend on the chosen value of σ8. From
the Figures 16 and 17, we have found that the difference of clusters between pure
conformally coupled and ΛCDM models is ∼ 6800 at z ≃ 0.3 and ∼ 160 at z ∼ 1.
The difference number of clusters between disformally coupled and ΛCDM models
is ∼ 26000 at z = 0.3 and ∼ 240 at z = 1. These difference number of clusters
yield the uncertainties which are computed from the Poisson error of the dN/dz
as ∆N ∼ 470 and ∆N ∼ 14 at redshifts 0.3 and 1 respectively. The difference
of cluster number counts from the disformally coupled models are larger than the
estimated in eROSITA uncertainty, ∆N ∼ 500 [101].



69

A1
B1
A2
B2
EL

0.0 0.2 0.4 0.6 0.8 1.0

-0.5

0.0

0.5

Figure 17 Plots of different ratio ∆dN ≡ (dN/dz)/(dN/dz)f −1 from dN/dz
presented in the Figure (16). Here, lines A1 and A2 represent
the different ratio of line A in the Figure (16) with ΛCDM and
uncoupled models respectively. Lines B1 and B2 represent
the different ratio of line B in the Figure (16) with ΛCDM
and uncoupled models respectively. Line E corresponds to
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CHAPTER V

CONCLUSIONS

In this work, we study the influence of disformally coupled on the evolution
of the Universe and cluster number counts of the overdense regions. We have found
that when the disformal coefficient depends on the kinetic terms of scalar field,
there exist two classes of fixed points. The fixed points in the first class are saddle
points, and exist only when disformal coefficient depends on the kinetic terms.
The fixed points in the second class can be stable when we set the parameters
corresponding to the accelerating expansion of the Universe. The fixed points in
this class can take different physically relevant values for the same value of the
parameters of the model. The two difference values of the fixed point for the same
value of the parameters can be avoided if λ1 is larger than one or the values of r0

and λ4 are set from the fixed point wdf ∼ −0.99 and Ωdf ≳ 0.9.
In addition to the background evolution of the Universe, we also study

effects of the disformal coupling between dark energy and dark matter on large scale
structure using spherical collapse model and the Press-Schechter/Sheth-Torman
mass function to compute cluster number counts. We have found that during
matter dominated epoch, the disformally coupled models have no significant effect
on the growth rate of dark matter density perturbation. Then, collapsing properties
of overdense regions are not altered by disformally coupled model.

For the disformally coupled model, at late time, the growth rate of dark
matter density perturbation can be enhanced due to the large coupling between
dark matter and dark energy. Thus, at late time, overdense regions can collapse
more efficiently indicating by low δc at low redshifts. In addition, comparing the
conformally coupled and uncoupled models, the overdensity at virialization phase
in the disformally coupled model can be suppressed at low redshifts.

Based on the Press-Schechter and Sheth-Torman mass functions, we have
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found that the estimated cluster number counts per redshift strongly suppressed
compared with uncoupled model at redshifts larger than 0.3 by the disformally
coupled model because of a large δc/σ8D(z). Furthermore, increasing the disfor-
mal coupling between dark matter and dark energy at late time, the predicted
cluster number counts can be increased compared with the conformally coupled
and uncoupled models at low redshifts by disformally coupled because of a large
comoving volume element per redshift.
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APPENDIX A PERTURBATION OF Q

In this appendix we explicitly show the computation for perturbation of
the coupling term Q from the equations (2.45) and (2.46). We begin the calculation
using the energy-momentum tensor for perfect fluid as

Tαβ =


ρm 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 , (A.1)

where we set c = 1. From the metric perturbation in Newtonian gauge given in
equation (4.5), we can write components 00 and ij of the metric perturbation and
also the inverse metric perturbation as

g00 = ḡ00 + δg00 = −1 − 2Φ, gij = ḡij + δgij = a2(1 − 2Φ)δij, (A.2)

g00 = ḡ00 + δg00 = −1 + 2Φ, gij = ḡij + δgij = 1
a2 (1 + 2Φ)δij . (A.3)

We use the metric perturbation in Newtonian gauge, small scales limit and use the
energy-momentum tensor for perfect fluid given in equation (A.1) to compute the
perturbation for the coupling term Q. From the equation (2.39)

Tm = gαβT
αβ = gαβg

ρβTα
ρ , (A.4)

the perturbation of the above equation is

δTm = (δgαβ)ḡρβT̄α
ρ + ḡαβ(δgρβ)T̄α

ρ + ḡαβ ḡ
ρβδTα

ρ

= (δg00)ḡ00T̄ 0
0 + ḡ00(δg00)T̄ 0

0 + ḡ00ḡ
00δT 0

0 + ḡij ḡ
ijδT i

j

= 2Φρm − 2Φρm − δρm

= −δρm . (A.5)
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From the equation (2.40)

Tmp = ϕ,αϕ,βT
αβ = ϕ,αϕ,βg

ρβTα
ρ , (A.6)

the perturbation of the above equation is shown below

δTmp = ϕ̄,αϕ̄,β[δgρβT̄α
ρ + ḡρβδTα

ρ ] = ϕ̄,0ϕ̄,0[δg00T̄ 0
0 + ḡ00δT 0

0 ]

= ˙̄ϕ2(2Φρ̄m + δρm) = ˙̄ϕ2δρm

= 2X̄δρm, (A.7)

where we neglect the terms proportional to Φ in the small scales. From the equation
(2.45), the perturbation calculation for θ1 is expressed below

θ1 = Tαβϕ,αβ = Tαβ∇α∂βϕ = Tαβ∂α∂βϕ− TαβΓρ
αβ∂ρϕ,

δθ1 = δ(Tαβ∂α∂βϕ) − δ(TαβΓρ
αβ∂ρϕ) = A1 + A2, (A.8)

A1 = δ(Tαβ∂α∂βϕ) = ∂α∂βϕ̄(δTαβ) . (A.9)

From the energy-momentum of matter

Tαβ = UαUβρm , (A.10)

the calculation for perturbation of the above equation shown below

δTαβ = UαUβδρm + 2ρ̄mU
αδUβ,

δT 00 = U0U0δρm + 2ρ̄mU
0δU0 = (1 − Φ)2δρm + 2ρ̄m(1 − Φ)(−Φ),

≈ δρm (A.11)

where 1 − Φ ≈ 1 in small scales limit. From the equation (A.9), we obtain A1 as

A1 = ∂0∂0ϕ̄δT
00 ≈ ¨̄ϕδρm . (A.12)



86

Consider A2 from the equation (A.8)

A2 = −δ(TαβΓρ
αβ∂ρϕ) = −δ(Γρ

αβg
σβTα

σ ∂ρϕ)

= −(δΓρ
αβ)ḡσβT̄α

σ ∂ρϕ̄− Γ̄ρ
αβ(δgσβ)T̄α

σ ∂ρϕ̄− Γ̄ρ
αβ ḡ

σβ(δTα
σ )∂ρϕ̄

= −(δΓ0
00)ḡ00T̄ 0

0 ∂0ϕ̄−(((((((((Γ̄0
0β(δg0β)T̄ 0

0 ∂0ϕ̄− Γ̄0
αβ ḡ

σβ(δTα
σ )∂0ϕ̄

= − ˙̄ϕḡ00T̄ 0
0 δΓ0

00 − ˙̄ϕḡσβΓ̄0
αβδT

α
σ , (A.13)

δΓλ
µν = −ḡλβδgβγΓ̄γ

µν + 1
2
ḡλα(∂µδgαν + ∂νδgαµ − ∂αδgµν),

δΓ0
00 = −������

ḡ0βδgβγΓ̄γ
00 + 1

2
ḡ0α(∂0δgα0 + ∂0δgα0 − ∂αδg00),

= 1
2
ḡ00∂0δg00 = −1

2
∂0(−2Φ) = ∂0Φ ≈ 0, (A.14)

A2 = − ˙̄ϕḡσβΓ̄0
αβδT

α
σ = − ˙̄ϕḡσjΓ̄0

ijδT
i
σ = − ˙̄ϕḡkjΓ̄0

ijδT
i
k (A.15)

ḡkj = δkj

a2 , Γ̄0
ij = Ha2δij (A.16)

δTα
β = ρ̄m(ŪαδUβ + ŪβδU

α + δUαδUβ)

+ δρm(ŪαŪβ + ŪαδUβ + ŪβδU
α + δUαδUβ) (A.17)

δT i
k = ρ̄m(����Ū iδUk +����ŪkδU

i + δU iδUk)

+ δρm(���
Ū iŪk +����Ū iδUk +����ŪkδU

i + δU iδUk)

= ρ̄mδU
iδUk + δρmδU

iδUk = (ρ̄m + δρm)δU iδUk

= ρmv
ivk (A.18)

A2 = − ˙̄ϕδ
kj

a2 Ha
2δijρmv

ivk = − ˙̄ϕHρmv
ivk (A.19)

Then, we obtain the perturbation for θ1 as

δθ1 = ¨̄ϕδρm − ˙̄ϕHρmv
ivk . (A.20)

The perturbation calculation for θ2 from the equation (2.45) shown below

θ2 = ϕ,αX,βT
αβ = ϕ,αX,βg

ρβTα
ρ ,

δθ2 = ϕ̄,α(δX,β)ḡρβT̄α
ρ + ϕ̄αX̄,β(δgρβ)T̄α

ρ + ϕ̄,αX̄,β ḡ
ρβδTα

ρ ,

= B1 +B2 +B3. (A.21)
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From the kinetic energy of the scalar field X = 1
2g

λσ∂λϕ∂σϕ, thus we have

X,β = −1
2

(∂βg
λσ)∂λϕ∂σϕ− gλσ(∂λϕ)∂β∂σϕ, (A.22)

δX,β = −1
2

(∂βδg
λσ)∂λϕ̄∂σϕ̄− δgλσ(∂λϕ̄)∂β∂σϕ̄. (A.23)

Using equations (A.22) and (A.23), hence B1, B2 and B3 become

B1 = −ϕ̄,αḡ
ρβT̄α

ρ

[1
2

(∂βδg
λσ)ϕ̄,λϕ̄,σ + δgλσϕ̄,λϕ̄,σβ

]
= −ϕ̄,0ḡ

0βT̄ 0
0

[1
2

(∂βδg
00)ϕ̄,0ϕ̄,0 + δg00ϕ̄,0ϕ̄,0β

]
= ˙̄ϕḡ0β ρ̄m

[1
2

˙̄ϕ2∂β(2Φ) + 2Φ ˙̄ϕ ˙̄ϕ,β

]
= −4ρ̄mX̄

¨̄ϕΦ ≈ 0, (A.24)

B2 = −ϕ̄,αT̄
α
ρ δg

ρβ
[1
2
ϕ̄,λϕ̄,σ∂β ḡ

λσ + ḡλσϕ̄,λϕ̄,σβ

]
= −4ρ̄mX̄

¨̄ϕΦ ≈ 0, (A.25)

B3 = −ϕ̄,αḡ
ρβδTα

ρ

[1
2
ϕ̄,λϕ̄,σ∂β ḡ

λσ + ḡλσϕ̄,λϕ̄,σβ

]
= 2X̄ ¨̄ϕδρm. (A.26)

From the equations (A.24) - (A.26), we get

δθ2 = 2X̄ ¨̄ϕδρm. (A.27)

We calculate the perturbation for θ3 as follows

θ3 = ϕ,α∇µT
αµ = ϕ,αg

αν∇µT
µ
ν ,

δθ3 = ϕ̄,α(δgαν)∇µT̄
µ
ν + ϕ̄,αḡ

ανδ(∇µT
µ
ν ) = C1 + C2 . (A.28)

Using the definition of covariant derivative, we can write C1 as follows

C1 = ϕ̄,0(δg00)∇µT̄
µ
0 = 2 ˙̄ϕΦ

[
∂µT̄

µ
0 + Γ̄µ

µρT̄
ρ
0 − Γ̄ρ

µ0T̄
µ
ρ

]
= −2 ˙̄ϕΦ( ˙̄ρm + 3Hρ̄m) ≈ 0 . (A.29)
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Similarly as C1, we can write C2 from the equation (A.28) as follows

C2 = ϕ̄,αḡ
ανδ[∂µT

µ
ν + Γµ

µρT
ρ
ν − Γρ

µνT
µ
ρ ]

= ϕ̄,αḡ
αν [∂µδT

µ
ν + Γ̄µ

µρδT
ρ
ν + T̄ ρ

ν δΓµ
µρ − Γ̄ρ

µνδT
µ
ρ − T̄ µ

ρ δΓρ
µν ]

= − ˙̄ϕ[∂µδT
µ
0 + Γ̄µ

µρδT
ρ
0 − ρ̄mδΓµ

µ0 − Γ̄ρ
µ0δT

µ
ρ + ρ̄mδΓ0

00]. (A.30)

Consider the first term in the bracket of the above equation, we have

∂µδT
µ
0 = ∂0δT

0
0 + ∂iδT

i
0 = −δρ̇m + ∂iδT

i
0, (A.31)

Tα
β = ρmU

αUβ,

δTα
β = UαUβδρm + ρ̄mδ(UαUβ),

δTα
0 = UαU0δρm + ρ̄mδ(UαU0),

∂αδT
α
0 = ∂α[UαU0δρm + ρ̄mδ(UαU0)] = ∂α[−Uαδρm + ρ̄m(����:δU0 = 0

UαδU0+U0δU
α)]

= ∂α[−Uαδρm + +ρU0δU
α]

= −(∂αU
α)δρm − Uα∂αδρm + (∂αρ̄)mU0δU

α + ρ̄m(∂αU0)δUα + ρ̄mU0∂αδU
α,

∂iδT
i
0 = −(∂iU

i)δρm − U i∂iδρm +�������
U0(∂iρ̄m)δU i +�������

ρ̄m(∂iU0)δU i + ρ̄mU0∂iδU
i

= −(∂iv
i)δρm − vi∂iδρm − ρ̄m(1 + Φ)∂iv

i

= −(∂iv
i)δρm − vi∂iδρm − ρ̄m∂iv

i . (A.32)

From the equations (A.31) and (A.32), we obtain

∂µδT
µ
0 = −δρ̇m − (∂iv

i)δρm − vi∂iδρm − ρ̄m∂iv
i. (A.33)

Consider the second term in the bracket of C2, we get

Γ̄µ
µρδT

ρ
0 = Γ̄µ

µ0δT
0
0 + Γ̄µ

µiδT
i
0 = (�

�Γ̄0
00 + Γ̄i

i0)δT 0
0 + (��Γ̄0

0i +�
�Γ̄j
ji)δT i

0 = Γ̄i
i0δT

i
0

= −3Hδρm. (A.34)



89

Consider the third term in the bracket of C2, we get

δΓµ
µ0 = ���δΓµ

µ0 + δΓi
i0 = −ḡiβδgβγΓ̄γ

i0 + 1
2
ḡiα(∂iδgα0 + ∂0δgiα − ∂αδgio)

= −ḡijδgjkΓ̄k
i0 + 1

2
ḡij(����∂iδgj0 + ∂0δgij −����∂jδgio)

= −ḡijδgjkδ
k
i H + 1

2
ḡij∂0(−2a2Φδij) = −ḡijδgijH − δij ḡ

ij∂0(a2Φ)

= −3( 1
a2 )(−2a2Φ)H − 2aȧΦ(3δ11ḡ

11) = 6HΦ − 6HΦ

= 0. (A.35)

Consider the fourth term in the bracket of C2, we get

Γ̄ρ
µ0δT

µ
ρ = ����0̄ρ

00δT
0
0 + Γ̄i

j0δT
j
i = δi

jHρmv
jvi

= ρmHv
ivi . (A.36)

The last term of C2 equal to 0, then we obtain

C2 = ˙̄ϕ[δρ̇m + (∂iv
i)δρm + vi∂iδρm + ρ̄m∂iδv

i + 3Hδρm + ρmHv
ivi] . (A.37)

From the equations (A.29) - (A.37), we obtian the perturbation for θ3 as

δθ3 = ˙̄ϕ[δρ̇m + ρm∂iv
i + vi∂iδρm + 3Hδρm + ρmHv

ivi] . (A.38)

The perturbation calculation for θ4 shown below

θ4 = ϕ,α∇αTmp = gαβϕβ∇α(ϕ,ρϕσT
ρσ),

δθ4 = ϕ̄,β(δgαβ)∇̄α(ϕ̄,ρϕ̄,σT̄
ρσ) + ḡαβϕ̄,βδ[∇α(ϕ,ρϕ,σT

ρσ)]

= D1 +D2 . (A.39)
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Consider D1 from the above equation

D1 = ϕ̄,β(δgαβ)ḡσλ
[
∂α(ϕ̄,ρϕ̄,σT̄

ρ
λ ) − Γ̄γ

ασϕ̄,ρϕ̄,γT̄
ρ
λ − Γ̄γ

αλϕ̄,ρϕ̄,σT̄
ρ
γ

]
= D1a +D1b +D1c, (A.40)

D1a = ϕ̄,β(δgαβ)ḡσλ∂α(ϕ̄,ρϕ̄,σT̄
ρ
λ ) = ϕ̄,0(δg00)ḡ00∂0(ϕ̄,0ϕ̄,0T̄

0
0 )

= ˙̄ϕ(2Φ)(−1)∂0[ ˙̄ϕ2(−ρ̄m)]

= 4X̄Φ(2 ¨̄ϕρ̄m + ˙̄ϕ ˙̄ρm) ≈ 0, (A.41)

D1b = −ϕ̄,βϕ̄,ρϕ̄,γ(δgαβ)ḡσλΓ̄γ
αλT̄

ρ
λ = −ϕ̄,0ϕ̄,0ϕ̄,0(δg00)ḡ00Γ̄0

00T̄
0
0

= 0, (A.42)

D1c = −ϕ̄,βϕ̄,ρϕ̄,σ(δgαβ)ḡσλΓ̄γ
αλT̄

ρ
γ

= 0 . (A.43)

Then, we get
D1 ≈ 0 . (A.44)

The calculation for D2 from the equation (A.39) shown below

D2 = ḡαβϕ̄,βδ[∇α(ϕ,ρϕ,σT
ρσ)]

= ḡαβϕ̄,β[(δgσλ)∇α(ϕ̄,ρϕ̄,σT̄
ρ
λ ) + ḡσλδ{∇α(ϕ,ρϕ,σT

ρσ)}]

= D2a +D2b, (A.45)

D2a = ḡαβϕ̄,β(δgσλ)∇α(ϕ̄,ρϕ̄,σT̄
ρ
λ )

= 4X̄Φ(2 ¨̄ϕρ̄m + ˙̄ϕ ˙̄ρm) ≈ 0, (A.46)

D2b = ϕ̄,β ḡ
αβ ḡσλδ[∇α(ϕ̄,ρϕ̄,σT̄

ρ
λ )]

= ϕ̄,β ḡ
αβ ḡσλδ[∇α(ϕ,ρϕ,σT

ρ
λ )]

= ϕ̄,β ḡ
αβ ḡσλδ[∂α(ϕ,ρϕ,σT

ρ
λ ) −�������Γγ

ασϕ,ρϕ,γT
ρ
λ −�������Γγ

αλϕ,ρϕ,σT
ρ
γ ]

= ϕ̄,β ḡ
αβ ḡσλ∂α(ϕ̄,ρϕ̄,σδT

ρ
λ ) = ϕ̄,0ḡ

00ḡ00∂0(ϕ̄,0ϕ̄,0aδT
0
0 )

= ˙̄ϕ(−1)(−1)∂0[ ˙̄ϕ2(−δρm)] = −2 ˙̄ϕ( ˙̄ϕ ¨̄ϕδρm + X̄δρ̇m) . (A.47)

From the equations (A.44) - (A.47), we obtain the perturbation for θ4 as

δθ4 = −2 ˙̄ϕ( ˙̄ϕ ¨̄ϕδρm + X̄δρ̇m) . (A.48)
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We show the perturbation calculation for θ5Tmp below

θ5Tmp = gαβϕ,βX,αTmp = gαβgσλϕ,βX,αϕ,ρϕ,σT
ρ
λ ,

δ(θ5Tmp) = ϕ̄,βϕ̄,ρϕ̄,σ

[
(δgαβ)ḡσλX̄,αT̄

ρ
λ + ḡαβ(δgσλ)X̄,αT̄

ρ
λ + ḡαβ ḡσλ(δX,α)T̄ ρ

λ

+ ḡαβ ḡσλX̄,αδT
ρ
λ

]
= E1 + E2 + E3 + E4, (A.49)

E1 = ϕ̄,βϕ̄,ρϕ̄,σ(δgαβ)ḡσλX̄,αT̄
ρ
λ = ϕ̄,0ϕ̄,0ϕ̄,0(δg00)ḡ00X̄,0T̄

0
0

= 8ρ̄mX̄
2 ¨̄ϕΦ ≈ 0, (A.50)

E2 = ϕ̄,βϕ̄,ρϕ̄,σḡ
αβ(δgσλ)X̄,αT̄

ρ
λ

= 8ρ̄mX̄
2 ¨̄ϕΦ ≈ 0, (A.51)

E3 = ϕ̄,βϕ̄,ρϕ̄,σḡ
αβ ḡσλT̄ ρ

λδX,α

= 8ρ̄mX̄
2ϕ̈Φ ≈ 0,

E4 = ϕ̄,βϕ̄,ρϕ̄,σḡ
αβ ḡσλX̄,αδT

ρ
λ

= −4X̄2ϕ̈δρm . (A.52)

From the equations (A.49) - (A.52), we obtain

δ(θ5Tmp) = −4X̄2 ¨̄ϕδρm . (A.53)

The computation for the perturbation of Tmp2ϕ shown below

Tmp2ϕ = ϕ,αϕ,βT
αβ∇ρ∂

ρϕ = ϕ,αϕ,βT
αβ 1√

−g
∂ρ(√g∂ρϕ)

= ϕ,αϕ,βT
αβ 1√

−g
∂ρ(

√
−ggρσ∂σϕ),

δ(Tmp2ϕ) = δ
(
ϕ,αϕ,βT

αβ 1√
−g

)
∂ρ(

√
−ḡḡρσ∂σϕ̄) +

(
ϕ,αϕ,βT

αβ 1√
−g

)
δ∂ρ(

√
−ggρσ∂σϕ)

= (δA)∂ρB̄ + Āδ(∂αB) = δZ1 + δZ2. (A.54)

From the metric perturbation given in equation (4.5), we obtain the determinant
of this metric as

g = det(gαβ) = −a6(1 + 2Φ)(1 − 2Φ)3,

√
−g = a3

√
(1 + 2Φ)(1 − 2Φ)3. (A.55)
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Using the binomial series

(1 + x)α = 1 + αx+ 1
2!
α(α− 1)x2 + ... , (A.56)

equation (A.55) becomes

√
−g = a3[1 + 1

2
(2Φ) + ...][1 + 3

2
(−2Φ) + ...] ≃ a3(1 + Φ)(1 − 3Φ)

= a3(1 − 2Φ) . (A.57)

We also obtain the inverse of the above equation as follows

1√
−g

= 1
a3 .

1√
1 + 2Φ

.
1√

(1 − 2Φ)3

= 1
a3 [1 − 1

2
(2Φ) + ...][1 − 3

2
(2Φ) + ...] ≃= 1

a3

= 1
a3 (1 − 4Φ). (A.58)

From the equation (A.54), we can write A, A background (Ā), B and B background
(B̄) respectively as

A = ϕ,αϕ,βT
αβ 1√

−g
= ϕ,αϕ,βg

γβTα
γ

1
a3 (1 − 2Φ), (A.59)

Ā = ϕ̄,αϕ̄,β ḡ
γβT̄α

γ

1
a3 , (A.60)

B =
√

−ggρσ∂σϕ = a3(1 − 2Φ)gρσ∂σϕ, (A.61)

B̄ = a3ḡρσ∂σϕ̄, (A.62)
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The perturbation for A is shown below

δA = ϕ̄,αϕ̄,βδ[gγβTα
γ

1
a3 (1 − 2Φ)]

= ϕ̄,αϕ̄,β[(δgγβ)T̄α
γ

1
a3 + ḡγβ(δTα

γ ) 1
a3 − ḡγβT̄α

γ

1
a3 ]

= δA1 + δA2 + δA3, (A.63)

δA1 = ϕ̄,αϕ̄,β(δgγβ)T̄α
γ

1
a3 = ϕ̄,0ϕ̄,0(δg00)T̄ 0

0
1
a3

= − 4
a3 X̄ρ̄mΦ = 0, (A.64)

δA2 = ϕ̄,αϕ̄,β ḡ
γβ(δTα

γ ) 1
a3 = ϕ̄,0ϕ̄,0ḡ

00(δT 0
0 ) 1
a3

= 2
a3 X̄δρm , (A.65)

δA3 = ϕ̄,αϕ̄,β ḡ
γβT̄α

γ

1
a3 = ϕ̄,0ϕ̄,0ḡ

00T̄ 0
0

1
a3

= − 4
a3 X̄ρ̄mΦ = 0 . (A.66)

From the equations (A.54), (A.62) - (A.66), We can write δZ1 as

δZ1 = 1
a3 2X̄δρm∂ρ(a3ḡρσ∂σϕ̄) = 1

a3 2X̄δρm∂0(a3ḡ00∂0ϕ̄)

= − 1
a3 2X̄δρm∂0(a3∂0ϕ̄)

= −2X̄δρm(3H̄ ˙̄ϕ+ ¨̄ϕ) . (A.67)

We derive the perturbation for δZ2 as

∂ρB = ∂ρ[a3(1 − 2Φ)gρσ∂σϕ],

δ(∂ρB) = ∂ρ[−2a3Φḡρσ∂σϕ̄+ a3(δgρσ)∂σϕ̄+ a3ḡρσ∂σδϕ],

δZ2 = ϕ̄,αϕ̄,β ḡ
γβT̄α

γ

1
a3∂ρ

[
a3{������(δgρσ∂σ)ϕ̄−������2Φḡρσ∂σϕ̄+ ḡρσ∂σδϕ}

]
= ϕ̄,0ϕ̄,0ḡ

00T̄ 0
0

1
a3 [∂0{a3ḡ0σ∂σδϕ} + ∂i{a3ḡiσ∂σδϕ}]

= 1
a3

˙̄ϕ2ρ̄m[∂0{a3ḡ00∂0δϕ} + ∂i{a3ḡij∂jδϕ}]

= 2
a3 X̄ρ̄m[−{3a2ȧδϕ̇+ a3δϕ̈} + a∂i∂iδϕ]

= 2
a2 X̄ρ̄m∂i∂iδϕ = 2X̄ρ̄m∇2δϕ . (A.68)
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From the equations (A.67) and (A.68), we obtain

δ(Tmp2ϕ) = −2X̄δρm(3H̄ ˙̄ϕ+ ¨̄ϕ) + 2X̄ρ̄m∇2δϕ. (A.69)



APPENDIX B TOP HAT MODEL

In this appendix, we show explicit details for the calculation of the non-
linear second order evolution equation for matter density contrast. We also apply
top hat model to our calculation [105]. From simple symmetric, we have

∂iδm|x=0 = vi
m(0, t) = 0 , (B.1)

where vi
m(0, t) is the comoving velocity. The equation (4.76) becomes

δ̇m

∣∣∣
x=0

= − [(1 + δm)∂iv
i
m]
∣∣∣
x=0

, (B.2)

or
∂iv

i
m

∣∣∣
x=0

= − δ̇m

1 + δm

∣∣∣∣∣
x=0

. (B.3)

Differentiating the equation (B.2) with respect to time t, and using the equation
(4.66), we obtain non-linear second order evolution equation for δm at x = 0 as
follows

δ̈m

∣∣∣
x=0

= − (2H + Q̃0ϕ̇) δ̇m

∣∣∣
x=0

+ 4
3

δ̇2
m

1 + δm

∣∣∣∣∣
x=0

+ 1 + δm

a2 (∂iΦ + Q̃0∂iδϕ)
∣∣∣∣∣
x=0

. (B.4)

To obtained the above equation we have used the identity

∇(vm ∇)vm|x=0 = 1
3

(∇ · vm)2
∣∣∣
x=0

= 1
3

δ̇2
m

(1 + δm)2

∣∣∣∣∣
x=0

. (B.5)

We then obtain linear second order evolution equation for δm as follows

δ̈m = −(2H + Q̃0ϕ̇)δ̇m + 1 + δm

a2 (∂iΦ + Q̃0∂iδϕ) . (B.6)
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