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Abstract. This article gives a brief overview of the time-dependent Lagrangian perturbation
theory as a theoretical tool to predict the behavior of galaxy clustering in quasi-linear regimes.
While most of the Lagrangian perturbation theories are based on an Einstein-De Sitter space
where the growth function is time independent, more accurate theoretical predictions could be
achieved by time-dependent growth functions in a more general cosmology. This is directly
applicable to the dynamical dark-energy where the clustering behavior can be recognized with
time-dependent growth functions.

1. Introduction
One of the main goals of cosmology is to understand the large-scale structure of the Universe.
The structures that we see in the galaxy surveys today are derived from the widely accepted
gravitational instability with primordial matter density fluctuations [1, 2]. A quantitative
understanding of the dynamics of the structure formation requires a theoretical modeling that
can be applied with statistical tools to test the theory against observations. Predicting the
behavior of the formation of the structures is crucially important as a direct way to validate
the current dynamical theory of gravity with the observations such as the Baryonic Acoustic
Oscillations (BAOs) [3]. As a simple, but accurate, model for numerical predictions, an
irrotational and pressureless fluid of cold dark matter physics is normally considered in the
non-relativistic regime [4]. The observable could, in principle, be predicted. When higher-order
terms are considered, one would expect that the numerical predictions should be more accurate;
however, with the cost of higher complexities and computational time.

There are two main classes of non-relativistic cosmological perturbation theory. One is
expressed observable quantities in terms of the Eulerian frame, called Standard Perturbation
Theory (SPT) [5, 6, 7]. Other one is given in the Lagrangian frame, call Lagrangian Perturbation
Theory (LPT) [8, 9]. This article I shall give a brief overview of the time dependent Lagrangian
perturbation theory up to the third order with is sufficiently high enough for accurate numerical
predictions especially the applications of the dynamical dark energy where the equation of state
is a function of time.

2. Lagrangian Perturbation Theory
In Lagrangian perturbation theory, the dynamical variable is the displacement field x(t) =
q(x) +Ψ(q, t), where Ψ is the displacement field, q is the position of the particle at the initial
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time. The dynamical equation is given by

J(q, t)∇ ·
[
d2

dt2
Ψ+ 2H(t)

d

dt
Ψ

]
=

3

2
ΩM (t)H2(t)(J − 1), (1)

where J(q, t) is the Jacobian of the transformation between x and q. The Hubble parameter,
H(t), composes of the component of the universe mainly cold dark matter ΩM (t) and dynamical
dark energy ΩDE(t) with the constant curvature parameter k.

H2(t)

H2
0

= ΩM (t) + ΩDE(t)−
kc2

a2(t)
. (2)

The dark energy depends on the equation of state parameter as

w(t) = w0 + w1
z(t)

1 + z(t)
, (3)

where z(t) is the redshift w0 and w1 are constants [10, 11].

3. The Evolution Equations for Perturbations
In order to describe the large scale structure that we see in the universe, we shall expand the
density field and the velocity field as

δ(x, t) = δ1(x, t) + δ2(x, t) + . . . , (4)

v(x, t) = v1(x, t) + v2(x, t) + . . . , (5)

where δn and vn is the corresponding nth order perturbative overdensity and velocity field
respectively.

3.1. First Order
To the first order, we can write the overdensity as

δ1(x, t) = D1(t)ϵ, (6)

where D1(t) is the linear growth function. ϵ(x) is the initial background overdensity. The linear
growth function can be found by solving the second-order differential equation with appropriated
initial conditions;

D̈1 + 2HḊ1 −
3

2
ΩMH2D1 = 0. (7)

3.2. Second Order
In order to calculate the second order term, the velocity potential, φ(x), is needed,

v1(x, t) = −Ḋ1∇φ(x). (8)

It turns out that the time-dependent growth function for the second-order perturbation D2(t)
is given by

D̈2 + 2HḊ2 −
3

2
ΩMH2D2 =

3

2
ΩMH2D2

1. (9)

As one can see the second order growth function is proportional to D2
1.
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Figure 1. The time evolution functions for third order terms ΩM,0 = 0.3, ΩDE,0 = 0.7 for
different values of w0 and w1 with the normalization condition D1 = 1 at a = 1.

3.3. Third Order
There are two time dependent growth functions for the third order terms D3a(t) and D3b(t)
which are given by

D̈3a + 2HḊ3a −
3

2
ΩMH2D3a =

3

2
ΩMH2

(
D3

1 + 3D1D2

)
,

(10)

D̈3b + 2HḊ3b −
3

2
ΩMH2D3b =

3

2
ΩMH2D3

1. (11)

Similar, to the second-order growth function, the third-order growth functions are proportional
to D3

1.

4. Results
In this article, we shall assume a flat cosmology with dark energy component i.e. ΩM,0 =
0.3,ΩDE,0 = 0.7 and k = 0. The time evolution equations are solved using fourth order Runge-
Kutta method with the condition D1(a = 1) = 1 i.e. the linear growth function is equal to
unity at the present epoch. The second and third-order growth functions are shown in FIG. 1
for different cosmological models with different value of w0 and w1. The growth functions are
sensitive to the equation of state parameter of the dynamical dark energy. The difference in
growth rate is more pronounced at the present epoch.

5. Conclusions
We study the third order Lagrangian perturbation theory and derive the time dependent
evolution functions. We find that there are different growth functions for different perturbative
orders; however, there are two independent evolution functions for the third-order quantities
which describe different terms in the expansion. The evolution function is sensitive to the
equation of state parameter of the dynamical dark energy w which is helpful for large-scale
structure surveys, where the effect of time-dependent w would be discernible. While the effect
of w on large-scale structure would look marginally different from the time-independent one’s, it
is possible to stack the differences in many redshift slides to amplify the difference. This can be
achieved with the the Alcock-Paczyński (AP) test [12] where the change in the angular diameter
distance can be recognized. Our approach is advantageous to the standard perturbation theory
(SPT) approach since we only need to specify the initial conditions for the first order quantities
in the density and velocity field.
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