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Abstract

We use the lensing potential map from Planck CMB lensing reconstruction analysis and the “Public Cosmic Void
Catalog” to measure the stacked void lensing potential. We have made an attempt to fit the HSW void profile
parameters from the stacked lensing potential. In this profile, four parameters are needed to describe the shape of
voids with different characteristic radii RV. However, we have found that after reducing the background noise by
subtracting the average background, there is a residue lensing power left in the data. The inclusion of the
environment shifting parameter, gV , is necessary to get a better fit to the data with the residue lensing power.
We divide the voids into two redshift bins: cmass1 ( < <z0.45 0.5) and cmass2 ( < <z0.5 0.6). Our best-fit
parameters are a = 1.989 0.149, b = 12.61 0.56, d = - 0.697 0.025c , = R R 1.039 0.030S V ,
g = -  ´ -7.034 0.150 10v

2( ) for the cmass1 sample with 123 voids and a = 1.956 0.165, b =
12.91 0.60, d = - 0.673 0.027c , = R R 1.115 0.032S V , g = -  ´ -4.512 0.114 10v

2( ) for the cmass2
sample with 393 voids at 68% C.L. The addition of the environment shifting parameter is consistent with the
conjecture that the Sloan Digital Sky Survey voids reside in an underdense region.
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1. Introduction

In the standard cosmological model, the universe is
homogeneous and isotropic on large scales. The seeds of
present-day large-scale structure of the universe are formed
from the highly Gaussian and nearly scale-invariant power
spectrum of matter density (Hinshaw et al. 2013; Planck
Collaboration et al. 2015c). However, on small scales, the
hierarchical clustering of matter leads to formations of complex
cosmic structure such as clusters of galaxies, walls, filaments,
and voids (Boylan-Kolchin et al. 2009). Among all of the large-
scale objects in the universe, cosmic voids, which are large
underdensities in the matter distribution, occupy the vast
majority of the universe and hence provide the largest volume-
based test on theories of structure formation (Ceccarelli
et al. 2006). Being interesting objects in their own right, they
contain a wealth of information on the fundamental properties
of the universe. For example, the low-density environment of
voids is a perfect place to study galaxies, as the galaxies are
expected not to be affected by the complex astrophysical
processes that modify galaxies in high-density environments,
and allows galaxies to evolve independently without environ-
mental effects (Beygu et al. 2013; Penny et al. 2015). In
addition, since voids occupy the cosmic volume where the
matter density is lowest, the difference between dark energy
and modified gravity models for cosmic acceleration could be
distinguishable within cosmic voids (Clampitt et al. 2013;
Barreira et al. 2015; Cai et al. 2015; Zivick et al. 2015).

The computational approach called N-body dark matter
simulations is one of the best tools to empirically understand
various void properties such as number functions (Sheth & van
de Weygaert 2004; Jennings et al. 2013) and void ellipticity
functions (Biswas et al. 2010). However, the definition of voids
is rather vague, and various definitions exist in the literature;

some are more suitable for theoretical calculations, while others
are more suitable for observations or N-body simulations. This
variety of definitions renders comparison of theoretical
predictions on void properties and observations difficult.
ZOBOV (Zones Bordering On Voidness; Neyrinck 2008) and
WVF (Watershed Void Finder; Platen et al. 2007) are two of the
popular void-finding algorithms. Both methods are based on
some tessellation methods and the watershed concept of
defining voids. ZOBOV requires no free parameters or
assumptions about the shape and is based on Voronoi
tessellation. However, the ZOBOV voids are unsmooth and
rather edgy. WVF also requires no free parameters and is based
on a watershed transform. However, WVF uses several
techniques to smooth the density field so that the WVF voids
are not edgy. With void identification algorithms being
progressively developed for galaxy redshift surveys such as
the Sloan Digital Sky Survey (SDSS), cosmic voids are being
continually found, amounting to releases of public void
catalogs (Pan et al. 2012; Sutter et al. 2012b, 2014a;
Nadathur 2016).
Recently, there has be an increasing amount of attention on

voids as objects for various aspects of cosmological studies.
The dynamic of voids and redshift-space distortion (Kai-
ser 1987) is one of the probes of the growth of large-scale
structure. The amount of dark matter in the universe could be
obtained from the peculiar velocity fields (Courtois et al. 2012).
The relationship between their extent angular size and the
distance along the line of sight, known as the Alcock–
Paczyński test (Alcock & Paczynski 1979), is predicted to be a
promising probe of dark energy by using a stacking method to
obtain a statistically averaged shape of voids in 2D or 3D
spaces. By stacking a large number of voids, one would expect
the difference in radial and transverse direction to be directly
related to the product of angular distance and the Hubble
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parameter (Lavaux & Wandelt 2012; Sutter et al.
2012a, 2014b). Another geometrical study, the evolution of
the ellipticity of voids, could be used as a tool in practice to
constrain the dark energy equation of state (Lee & Park 2009;
Bos et al. 2012). The Integrated Sachs–Wolfe (ISW) effect
(Sachs & Wolfe 1967) caused by the evolution of the
gravitational potential within voids can also be detected
(Granett et al. 2008; Ilić et al. 2013; Cai et al. 2014; Chen &
Kantowski 2015; Hotchkiss et al. 2015; Planck Collaboration
et al. 2015e).

The measurement of weak gravitational lensing probes the
matter distribution by means of the deflection of light from the
background sources. The trajectories of photons from back-
ground sources are bent toward gravitating matter due to the
distortion of spacetime caused by gravitational lensing
(Einstein 1936). The scenario is reversed when voids are
acting as the sources of gravitational lenses instead of dark
matter. The delensing effect of voids has been investigated and
recently observed through the distortions of background
galaxies by a stacking method that enhances the signal
(Higuchi et al. 2013; Krause et al. 2013; Melchior
et al. 2014; Clampitt & Jain 2015; Gruen et al. 2016).

The cosmic microwave background (CMB) radiation, which
is the signal from the last scattering surface, exists as the
ubiquitous background for gravitational lensing. The gravita-
tional anti-lensing effect of voids has been recently investigated
by Bolejko et al. (2013), Chen et al. (2015), and Das & Spergel
(2009). The CMB signals that are lensed by multiple voids are
also a promising tool to obtain good constraints on cosmolo-
gical parameters (Chantavat et al. 2016). Planck (Planck
Collaboration et al. 2015d) has released lensing potential maps
from the CMB6 that utilized quadratic estimators that exploit
the statistical anisotropy induced by lensing (Okamoto &
Hu 2003). From a theoretical point of view, if the matter
density distribution within a void, known as a void profile, is
known, then the lensing potential could be computed and
vice versa. The statistical average void density profile known as
the universal void profile (hereafter HSW; Hamaus
et al. 2014a) has been released and potentially could be
exploited to predict the lensing effect of voids at various sizes
and redshifts with only a few parameters (more in Section 3).
Hence, from the lensing potential data from Planck, one could,
in principle, derive the HSW parameters. This would be a good
consistency check if the HSW void profile could be reverse-
engineered from observables.

The goals of this article are (1) to extract the stacked lensing
potential from Planck lensing data by cross-correlation with
voids from SDSS data (Sutter et al. 2014b), (2) to compare and
cross-examine the derived HSW void parameters from the
Plancklensing potential map with other methods, and (3) to
better understand the effect of gravitational lensing from voids
in the Planck lensing data. We shall begin with a description of
the void catalog from the SDSS galaxy redshift survey (Sutter
et al. 2014b) and Planck lensing data (Planck Collaboration
et al. 2015d) in Section 2. The extraction and cross-correlation
methods are also discussed. In Section 3, we describe the HSW
void profile parameterization, and a brief overview of the
gravitational lensing effect with voids is also introduced. Our
parameter estimation is described in Section 4, and the results
are shown in Section 5. The discussions and conclusions are

given in Section 6. Throughout this article, our fiducial
cosmological parameters are W = 0.315M , W =L 0.685,

= - -H 67.3 km s Mpc0
1 1, = -w 1, and W = 0k , which is

consistent with a flat ΛCDM cosmology from Planck 2013 +
WMAP polarization maximum likelihood cosmological para-
meters (Planck Collaboration et al. 2014).

2. Data and Methodology

This study utilizes the lensing potential measured from the
lensed CMB maps to extract the potential in the vicinity around
cosmic voids. Here, we describe the data sets and method for
measuring the stacked voids’ lensing potential, which will be
used to constrain the void density profile, as discussed further
in Section 3.

2.1. Planck Lensing Potential Map

The descriptions of data products and an overview of the
scientific results of the Planck full-mission data release are
given by Planck Collaboration et al. (2015a). Apart from CMB
temperature, polarization frequency maps, and foreground
component maps, the science team also released the recon-
structed lensing potential map of the CMB (Planck Collabora-
tion et al. 2015d). They applied quadratic lensing estimators
and procedures described by Okamoto & Hu (2003) to the
foreground-cleaned CMB map. The foreground-cleaned map
was constructed from all the frequency band maps using the
SMICA procedure (Planck Collaboration et al. 2015b). The
contaminated regions of the SMICA map were further removed
with the Galaxy, point-source, and SMICA-specific temperature
and polarization masks, which leave ≈67% of the sky for the
minimum-variance lensing reconstruction analysis. Given the
sensitivity and angular resolutions of the Planck mission, the
analysis thus results in the most significant measurement of the
CMB lensing potential map to date.
The online data provided by the Planckscience team are in

the standard HEALPix format (Górski et al. 2005). The
spherical harmonics coefficients of lensing convergence, kℓm,
are given for multipoles up to =ℓ 2048max instead of the
lensing potential, yℓm. We use the standard definition of lensing
convergence to calculate yℓm from

k y=
+ℓ ℓ 1

2
. 1ℓm ℓm

( ) ( )

We then use the HEALPix synfast package to synthesize
the lensing potential map, y n( ˆ). The generated map has a
resolution of =N 2048side (i.e., » ¢ ´ ¢1.7 1.7 pixels). The

Figure 1. Lensing potential map, y n( ˆ), constructed from Planck lensing
convergence, kℓm. The gray shaded area marks the rejected pixels excluded by
the analysis mask.

6 Can be downloaded from http://pla.esac.esa.int/.
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projected lensing potential map is shown in Figure 1. This
reconstructed lensing potential map is used to cross-correlate
with the cosmic void catalog, where the azimuthally averaged
potential around each void is extracted, scaled, and then
combined to constrain the void density profile. For our
analysis, we shall use only those regions that pass the analysis
mask (Galaxy + point-source + SMICA).

2.2. Cosmic Void Catalog

In this work, we use the “Public Cosmic Void Catalog”
(Sutter et al. 2012b) constructed using a modified and extended
version of the watershed algorithm ZOBOV, called “Void
IDentification and Examination” (VIDE; Sutter et al. 2014b).
We applied the code to the SDSS Data Release 7 (Abazajian
et al. 2009) main galaxy sample and SDSS-III Baryon
Oscillation Spectroscopic Survey (BOSS) Data Release 10
(Ahn et al. 2014) LOWZ and CMASS samples. This results in
»1500 individually detected voids. The samples represent
volume-limited catalogs of voids at various redshift bins.

To minimize any possible evolution of the profile para-
meters, we choose to work with voids in individual redshift
bins and do not stack voids across the bins. In order to have as
many voids in a single bin as possible, we chose a high-redshift
bin to increase the volume. Here, we report on the analysis
using the “dr10cmass1” ( < <z0.45 0.5, D =t 0.4 Gyrage ,

=N 229void ) and “dr10cmass2” samples ( < <z0.5 0.6,
D =t 0.7 Gyrage , =N 696void ), hereafter called “cmass1” and
“cmass2,” respectively.

We therefore stacked the Planck lensing potential map
(Section 2.1) around the central positions of cosmic voids taken
from the Sutter et al. (2014b) “dr10cmass1” and “dr10cmass2”
samples as two separated measurements. However, during our
analysis we found that considerable numbers (106 and 303 for
cmass1 and cmass2, respectively) of the voids are located in the
negative lensing potential regions, which could be due to a
number of reasons and warrants further investigations. We
therefore restrict our analysis to 123 and 393 voids from
samples cmass1 and cmass2, respectively. The radius and
redshift distributions of the subsamples that we used do not
show any significant difference from those of the excluded low-
signal subsamples (see Figure 2).

2.3. Stacking Analysis

The stacking analysis is performed on the Planck lensing
potential map (See Section 2.1) around each of the voids’
centers. Since we need to compare our measurements to the
theoretical prediction of the size-independent potential,
y r RV
˜ ( ) (see Equation (11) in Section 3.2), but the potential
map is a 2D projection on the surface of a sphere, we therefore
bin up the lensing potential according to physical separation
and not angular separation. Therefore, for each void, we use the
comoving angular diameter distance, DA(z), to scale the pixels
of the lensing maps surrounding the vicinity of each void
according to its redshift z and radius RV. For the ith r RV i( ) bin,
its corresponding angular bin is given by

q = ´z R R D z r R, . 2i V V A V i( ) ( ) ( ) ( )

The lensing potential value in each r RV bin around a void is
azimuthally averaged and is then background subtracted by the
measurement at the largest separation, R10 V . Next, we scale the
amplitude of the overall lensing potential measured from each

void according to Equation (12) to account for their different
redshifts and radii before we combine them together. Each
lensing potential is scaled to its respective median redshift and
radius,

y y=

´
+

+
+

+

r R r z R

R z D z D z

R z D z D z

; ,

1

1
, 3

V i V i

V A

V A

,med
3

med
3

med

3 3
med

˜ ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

( )

where RV ,med and zmed are the median void radius and redshift,
respectively, of the bins given in Figure 2. The average lensing
potential is then calculated from the scaled measurements of
123 and 393 voids for cmass1 and cmass2 samples,
respectively. The uncertainties of our measurement are then
calculated using the jackknife resampling technique. The void
sample is separated into 12 subsamples according to their
Galactic latitudes and longitudes. We then remeasure the
lensing potential 12 times, each jth time leaving out one
subsample, and the jackknife error is given by

å y y

y y

S = -

´ -

r R r R r R

r R r R

11

12

, 4

ij V
i j

i V V

j V V

JK

,

12

( ) ( ˜ ( ) ¯ ( ))

( ˜ ( ) ¯ ( )) ( )

where y r RV¯ ( ) is the averaged lensing potential from 12
jackknife subsamples. The measured lensing potential and the
estimated uncertainties are shown in Figure 3. Using the same
jackknife sub-sampling method, we also estimate the correla-
tions between measurements of different bins (off-diagonal
elements). The estimated covariance matrices are then used in
our fitting procedure as described in Section 4.

3. Theory

In this section, we describe all the relevant theories in this
analysis, such as the parameterization of the void density
profile and the theory of gravitational lensing potential
applicable to voids.

3.1. Void Density Profile Parameterization

In general, voids will be observed with various shapes and
orientations in the field of view. However, the averaged void
density profile will be spherically symmetric and is well fitted
by the universal void density profile (Hamaus et al. 2014a). The
profile is given by

dr
r

d g=
-
+

+
a

b

r r R

r R

1

1
, 5V

M
c

S

V
V

( )
¯

( )
( )

( )

where rM¯ is the mean cosmic matter density and drV is the
density deviation for the mean density. RV is the characteristic
void radius, and RS is a scale radius where r r=RV S M( ) ¯ . a b, ,
and dc are the shape parameters. gV is an environment shifting
parameter that was not included in the original model.
However, the benefit of the inclusion of the environment
parameter is twofold. First, the parameter takes into account
any systematic uncertainties that may occur in the data
extraction process. The parameter gV is considered as a
nuisance parameter, which could be marginalized later. Second,
there is a tendency that voids in the SDSS catalogs may reside

3
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in an underdense region of the universe (Hamaus et al. 2014b).
The constant shifting parameter will take the locality of the
environment of voids into account. We shall take the average
void profile as our estimate of the void profile in the analysis.
Since RV has been given from the data, we shall use R RS V as
one of the fitting parameters. Hence, our vector in the
parameter space is a b d g=X R R, , , ,c S V V{ }.

3.2. Void Gravitational Lensing Potential

We encourage readers to consult Bartelmann & Schneider
(2001) for a general review of gravitational weak lensing. The
gravitational potential at redshift z is given by

p r d Y = + =+G z D z z4 1 0 , 6N M M
2

0¯ ( ) ( ) ( ) ( )

where +D z( ) is the growth function normalized to unity at
z=0. rM0 is the matter density at the present epoch. The
lensing potential is defined as the integral over the line-of-sight
direction n̂,

òy c c= - Y^n
c

d n
2

, 7N2
( ˆ) ( ˆ) ( )

where χ is the comoving distance. ̂ is the transverse
derivative

q f
q q f

 º
¶
¶

+
¶
¶

^
sin

. 8ˆ ˆ
( )

The excess surface density is given by the line-of-sight integral

òds dr= +
-¥

¥
b dx x b , 9V V

2 2˜ ( ) ( ) ( )

where =x r RV and b is the scaled impact parameter. It is
convenient to define scale-invariant quantities that are a
function of the scaled radius x. In this article, all the scale-
invariant quantities are denoted by the tilde symbol.
From Equation (7), the lensing potential is given by

ò òy ds=b
dy

y
dx x x . 10

b y

0 0

˜ ( ) ˜ ( ) ( )

The lensing potential will be given by

y y= ´r R z R z r R; , , , 11V V V( ) ( ) ˜ ( ) ( )

where the scaling factor  R z,V( ) is

⎛
⎝⎜

⎞
⎠⎟

p
r= ´

+
-

+
-

R z
G

c

R

h

z D z

D z h
,

16

Mpc

1

Mpc
,

12

V m
V

A
2 0 1

3 3

1
( ) ¯ ( ) ( )

( ( ) )
( )

where DA(z) is the comoving angular diameter distance.

4. Parameter Estimation

In order to find the best-fitting set of parameters for the
lensing potential, we shall adopt the maximum likelihood
estimator method as a fitting criterion (Hald 1999). Using the

Figure 2. Redshift (top) and radius (bottom) distributions of the void samples
used in our analyses from the “dr10cmass1” (black solid lines) and
“dr10cmass2” (blue dashed lines) samples, where their medians are

=z 0.47cmass1 , = -R h28.26V ,cmass1
1 Mpc and =z 0.53cmass2 ,

= -R h31.68V ,cmass2
1 Mpc, respectively. For comparison, the redshift and

radius distributions of voids rejected for the stacking analysis, as a result of a
very weak lensing signal or having negative lensing potential, are also shown.
We do not observe any significant deviation in their redshift and radius
distributions.

Figure 3. Lensing potential from Planck data where voids are detected with
SDSS data.
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log-likelihood function of the form,

 åy y y

y y

S=- -

´ -

-X X

X

x

x

log ;
1

2
;

; , 13

i j

M

i i
D

ij

j j
D

,

JK 1[ ˜ ] ( ˜ ( ) ˜ )( )

( ˜ ( ) ˜ ) ( )

where  y Xlog ;[ ˜ ] is the log-likelihood functional of the

lensing potential y Xx ;i˜ ( ) and yi
D˜ is the lensing potential from

the data as in Equation (3).SJK is the data covariance matrix in
Equation (4). The summation is running over all the data points
M. The best-fit parameters will be the set of parameters Xbest

that maximizes the functional.
In order to explore the parameter space effectively, a Markov

chain Monte Carlo (MCMC) method with the Metropolis–
Hastings algorithm is implemented (Metropolis et al. 1953;
Hastings 1970). The Metropolis–Hasting algorithm will
advance the state with an acceptance probability from a
parameter state X to a parameter state Y given by

⎧⎨⎩
⎫⎬⎭a

p
p

=X Y
Y Y X
X X Y

q

q
, min 1,

,

,
, 14( ) ( ) ( )

( ) ( )
( )

where Y Xq ,( ) is the proposal probability distribution from X
to Y . We shall take a multivariate normal distribution as our
density proposal distribution,





p S

S

S

=

´ - - -

º

-

Y X

Y X Y X

Y X

q ,
1

2 det

exp
1

2
,

; , , 15

N 1 2

1{ }
( )

(( ) ( ))

( ) ( )

( ) ( )

where S is the covariance matrix. Since our proposal
distribution is symmetric, our acceptance probability is
a p p= Y Xmin 1,{ ( ) ( )}. p X( ) is the weighing distribution,
which shall be taken as the likelihood function, i.e., the
exponential of Equation (13).

The MCMC will sample the parameter space giving a chain,
= ¼X i, 0, 1,i{ }, for the ith iteration. The chain will continue

until an equilibrium state is reached, and the MCMC will
sample the underlying posterior distribution. For an MCMC
with a fixed variance of the proposal distributionS, this could
lead to a situation where the acceptance rate is either too small
or too large. This could result in a final posterior distribution
being localized or a slow convergence rate, respectively. For a
better learning performance, an adaptive MCMC algorithm
(Andrieu & Thoms 2008) shall be implemented. The algorithm
has the advantage of adjusting the variance according to the
acceptance probability by introducing the scaling factor l j for
the marginal variance S j j,[ ] . In addition, the mean value of the
posterior distribution

m º á ñX 16( )

and the covariance matrix
m mS º á - - ñX X 17( ) · ( ) ( )

are updated for each iteration. This is achieved by a comparison
of a X Y,( ) with a preferred acceptance rate *a . If

*a a<X Y,( ) for most transition attempts, then S should be
increased. If, on the other hand, *a a>X Y,( ) for most
transition attempts, then S should be decreased. However, the

acceptance rate will be compared with the preferred acceptance
rate component-wise to allow the case where S should
decrease in one direction in the parameter space and increase
in the other direction. Hence, our proposal distribution will be
given by  L SLY X; , 1 2 1 2( ), where L is a scaling matrix,

l lL = ¼diag , , . 18N1( ) ( )

The algorithm is explained in detail in the following, where ekˆ
is a unit vector with zeros everywhere except the kth
component and zi is a nonincreasing function of i, the iteration
number:

(a) Initialize X0, m0, S0, and l l¼, , N
0
1

0 for i=0.
(b) Iterate +i 1 using the following procedure:

1. For a given m S,i i and l l¼, ,i i
N1 sampleDXi from the

distribution  L SLX ,i i i i
1 2 1 2( ).

2. Propose a new state = + D+Y X Xi i i1 and transverse
to the new state with probability a +X Y,i i 1( ); other-
wise, =+X Xi i1 .

3. Update the scaling factor for = ¼j N1, ,

*

l l
z a a

=
+ + D -

+

+ X X X j e

log log

, . 19
i
j

i
j

i i i i j

1

1

( ) ( )
[ ( ( ) ˆ ) ] ( )

4. Update mean and covariance matrix,

m m mz= + -+ + +X 20i i i i i1 1 1( ) ( )

and

m
m

zS S
S

= + -
´ - -

+ + +

+

X

X . 21
i i i i i

i i i

1 1 1

1

[( )
( ) ] ( )

(c) Repeat the procedure until an equilibrium state is
achieved.

There are no constraints on the functional form of zi as long
as it is nonincreasing (Roberts & Rosenthal 2007). We shall set
zi as

z =
i

1

10
. 22i 1 3

( )

5. Results

We divide our lensing potential data into three data sets:
Data-I, where we include the lensing potential from the center
to R1 V , and Data-II and Data-III, where we include the lensing
potential to R2 V and R3 V , respectively. Data-I will help in
exploring the interior structure of voids, while Data-II and
Data-III will get an overall fit to the void profile. With the
inclusion of an environment parameter from the HSW void
profile, we shall refer to the model without the parameter, gV ,
as Model A and the model with the environment parameter as
Model B. The initial position in the parameter space for each
chain will be randomly selected from the parameter range, as
shown in Equation (23):

a b
d

g

Î Î
Î - - Î

Î -
R R

0.00, 4.50 , 0.00, 24.00 ,
0.80, 0.20 , 0.80, 1.60 ,

0.30, 0.30 . 23
c S V

V

[ ] [ ]
[ ] [ ]

[ ] ( )
The range for each parameter is large enough to ensure that

our fitting parameters will fall in agreement with other works
(Hamaus et al. 2014a, 2015). In the adaptive MCMC described
in Section 4, each data set was run for a total number of 100
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chains with 20,000 sampling points per chain. As for the burn-
in period, we abandon the initial 15,000 points and take only
the last 5000 points for our parameter estimation. For Data-I
our fitting parameters are all the void parameters without the
environment parameter, i.e., g = 0V . This is due to the fact that
the fit to Data-I with only void parameters is already good
without the environment parameter. Adding the environment
parameter would produce an unnecessary overfit to the data.
However, the void parameters with the environment parameter
are used to fit Data-II and Data-III as the merit of an additional
parameter to the model overcomes the penalty of adding more
parameters (Occam’s razor). The interpretation of the environ-
ment parameter will be further discussed in Section 6.

We take the average mean and covariance matrix as follows:

åm m=
=N

1
24

c i

N

iave
1

c

( )

and

åS S=-

=

-

N

1
, 25

c i

N

iave
1

1

1
c

( )

where Nc is the number of chains andSi is the final covariance
matrix for the ith chain. We shall use the Gaumixmod
algorithm (Press et al. 2007) to find the best-fit mi and Si for
each chain. Our best-fitting parameters for Model A and Model
B are shown in Table 1. The resulting void profile and lensing
potential from the best-fit parameters in each data set are shown
in Figure 4. For comparison, the best-fit parameters for Model
A and Model B for each data set are shown in Figure 5.

6. Discussions and Conclusions

From the void profiles shown in the left panel of Figure 4
and the void parameters in Table 1, if we calculate the excess
mass òd p d= *

¥
m x x dx4 V0

2( ) , we could see that the excess

mass lies within the range - -2.5, 1.5( ) for Model A and
- -1.5, 0.5( ) for Model B. The range of value indicates that
voids found in SDSS data are mostly undercompensated,
having less density than the average. This indicates the fact that
voids in underdense regions are easily found with high
significant levels in SDSS data since large voids are usually
found in underdense regions. We also notice that without gV
the excess mass is higher in the negative value.
In Table 1, we show the best-fit parameters within s1

uncertainties. The parameters from different data sets all agree
within the uncertainty ranges. The values of the environment
parameter gV are ~-0.08 for cmass1 and ~-0.05 for cmass2
with a high significant detection level from zero. The negative
value of gV indicates that on average the voids in SDSS data are
in a locally underdense region, which is also confirmed by the
integrated mass discussed previously. This effect could be seen
from the lensing potential shown in Figure 3. Since the
deflection angle is equal to the gradient of the lensing potential
a yº ^( ), the nonzero gradient of the lensing potential at
large radius indicates that there is some residue lensing power.
The lensing power mainly comes from the deficit (or excess)
mass from the voids (or clusters). The constancy of the gradient
translates into the constancy of the excess mass. Our MCMC
has shown that this residue power is caused by the mass deficit
by having a negative value of gV . However, this comes with the
caveat, as stated in Planck Collaboration et al. (2015d), that the
lensing potential has a very red spectrum and when cutting the
map into small regions it could cause a leakage issue. This is
the reason the team chose to release the lensing convergence
rather than the potential. And for our purposes we need to
convert it back to the lensing potential (Section 2.1).
To justify the necessity of the environment parameter, the

best-fit lensing potentials from the models with and without the
environment parameter are shown in Figure 5. The likelihood
ratios between the models with and without the environment
parameter  w w o are 1.01, 1.36, and 77.4 for Data-I, Data-II,

Table 1
Fitting Parameters for Model A and Model B

cmass1 Sample

Parameters Data-I Data-II Data-III

Model A Model B Model A Model B Model A Model B
(without gV ) (with gV ) (without gV ) (with gV ) (without gV ) (with gV )

α 2.471±0.127 2.016±0.105 2.612±0.116 1.923±0.130 2.642±0.107 1.989±0.149
β 12.35±0.62 11.59±0.45 13.53±0.49 11.68±0.48 13.92±0.51 12.61±0.56
dc −0.739±0.024 −0.699±0.018 −0.766±0.022 −0.689±0.024 −0.786±0.020 −0.697±0.025
R RS V 1.148±0.025 0.969±0.028 1.199±0.021 1.006±0.034 1.236±0.021 1.039±0.030
g ´ -10V

2( ) N/A −9.679±0.663 N/A −8.505±0.298 N/A −7.034±0.150

cmass2 Sample

Parameters Data-I Data-II Data-III

Model A Model B Model A Model B Model A Model B
(without gV ) (with gV ) (without gV ) (with gV ) (without gV ) (with gV )

α 2.580±0.129 1.935±0.119 2.687±0.116 1.617±0.126 2.959±0.122 1.956±0.165
β 12.22±0.52 11.43±0.49 13.85 ±0.50 12.32 ±0.52 13.71±0.53 12.91 ±0.60
dc −0.726±0.021 −0.668±0.019 −0.784±0.022 −0.657±0.021 −0.817±0.020 −0.673±0.027
R RS V 1.172±0.023 0.991±0.031 1.260±0.017 1.002±0.037 1.276±0.016 1.115±0.032
g ´ -10V

2( ) N/A −5.716±0.693 N/A −6.747±0.239 N/A −4.512±0.114

Note.All the uncertainties are s1 for the different data sets.
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and Data-III, respectively, for cmass1. Without taking the
penalty of an additional parameter in w into account, we could
see that the environment parameter is preferred in Data-III,
while it is less preferable for Data-I and Data-II. The best-fit
parameters for all samples and models are shown in Table 1.
From Table 1, the significant detection levels for the
environment parameter for Data-I, Data-II, and Data-III are
approximately s15 , s30 , and s47 for Data-I, Data-II, and Data-
III, respectively, for the cmass1 sample. The general results
hold similarly for the cmass2 sample.

To analyze the effect of gV on the other parameters, we shall
take the best-fit parameters from Data-III for the cmass1 sample
from Table 1 for a comparison. The effects of how the HSW
parameters alter the shape of the void profile are explicitly
shown in Figure 8 in Barreira et al. (2015). In both models, the
values of β between the two models are not much different
given the uncertainties in the values—the values differ by s2.3 .
The similarity in the values of β indicates that the extensions of
the compensation region are similar. However, the values of α,

dc, and R RS V are significantly different by s4.4 , s3.6 , and
s6.6 , respectively. α describes the slope of the underdense

region, dc describes the depth of the void profile, and R RS V is
the zero-crossing radius. In general, Model B (with gV ) gives a
shallower void profile than Model A (without gV ) by having
smaller values of α and dc. This indicates that gV has a direct
degenerate effect with both α and dc—lowering the mean
density could be compensated by having a shallower profile.
Attempts to recover or fit the HSW void parameters are

found in Nadathur et al. (2014, hereafter N14) and Hamaus
et al. (2015, hereafter H15). In N14, the stacked void profiles
for different radii and redshifts are compared between a mock
luminous red galaxy (LRG) catalog from the Jubilee simulation
and the SDSS LRG and Main Galaxy samples. They have
found that the void profiles from the simulations and the SDSS
galaxy samples matched. H15 investigated the redshift-space
distortions between pairs of galaxies from a mock galaxy
catalog with HOD parameters from Zheng et al. (2007) and
Manera et al. (2013) and stacked voids in redshift space. The

Figure 4. Best-fit void profiles and lensing potentials for each data set. The blue, red, and green bands are for Data-I, Data-II, and Data-III, respectively. All the error
bars are s1 for the cmass1 sample.

Figure 5. Best-fit lensing potential for Data-I, Data-II, and Data-III (left to right). The solid lines are void parameters with the environment parameter, while the dashed
lines are void parameters without the environment parameter. Even though all the models with the environment parameter fit better with the data, the model without
the environment parameter also fits well for Data-I and Data-II. All the plots are subjected to the condition y = =r R3 0V( ) . The error bars are s1 .
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inference on the HSW void parameters was made by assuming
the Gaussian streaming model, where the distribution of the
pairwise line-of-sight velocities is assumed to be Gaussian. The
HSW parameters in N14 and H15 are a b d =R R, , ,c S V( )

-1.57, 5.72, 0.69, 0.81( ) and a b d = , , 0.96 0.14,c( ) (
 - 8.84 1.16, 0.912 0.052), respectively. The main differ-

ences in the parameter constraints from our work and theirs are
from the different methodology used in deriving the parameters
and the inclusion of gV . We also notice that the value of dc from
N14 (observationally derived) and our value, especially for
Data-I, are similar, while the value of dc from H15 (mock
catalog derived) is remarkably different. This may indicate a
systematic bias between the SDSS samples and the mock
catalog.

To summarize this work, we cross-correlated the Planck
lensing map with 516 voids found in the SDSS data and
stacked them to obtain the stacked lensing potential from voids.
From the stacked void lensing potential, we recover the HSW
void parameter from three different data sets: Data-I to R1 V ,
Data-II to R2 V , and Data-III to R3 V . We have found that it is
necessary to include the environment parameter in the void
profile to obtain a good fit to the data. The environment
parameter has a physical interpretation that voids found in the
SDSS data are mostly undercompensated voids and reside
within an underdense region. The effects of the deficit mass are
shown in Figure 3, where the gradient of the lensing potential is
constant at large distances.
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