An Introduction to Mathematical Tools in General Relativity

Apimook Watcharangkool

National Astronomical Institute of Thailand (NARIT)
Pre-school lecture note: Tah Poe School 4

Contents

1 Introduction 1
2 Smooth manifold 1
2.1 Definition of manifold 2
2.2 Smooth function 3
3 Vectors, covectors and tensors on manifolds 3
3.1 Vector bundle and tangent space 4
3.2 Covector 5
3.3 Tensors 6
4 Connection and curvature 6
4.1 Connection 6
4.2 Curvature from acceleration 8
4.3 Properties of curvature tensor 9
5 Einstein equation 10
5.1 Energy-Momentum tensor 10
5.2 Einstein Hilbert action 11

1 Introduction

In Newtonian gravity, gravity is a mysterious force pulling objects together and spacetime is just a non-interactive background. In this picture, the trajectory of an object in the spacetime (space is a 3 -dimensional Euclidean space) under the influence of gravitational field is not a shortest path. Unlike Newtonian gravity, general relativity (GR) is a theory of spacetime and how energy and matter affect the geometry of spacetime. In GR space, and time play a crucial role in the description of gravity, and any free falling object in GR always take the shortest path. Of course such a phenomenon does not occur in Euclidean space. The type of geometry that we use in GR is Riemannian geometry (or rather psuedoRiemannian geometry), which is what we will discuss next.

2 Smooth manifold

A topological space is a set that we know how to define a continuous function on it. A smooth manifold is a topological space M with some extra structures which allow us to define the notion of smoothness (differentiable).

2.1 Definition of manifold

Definition 2.1 A topological space M is a manifold if it satisfies the following properties

- M is a Hausdorff: any two points can be distinct by two disjoint open sets.
- second countable: there exists a countable basis for topology.
- Locally Euclidean: for any $p \in M$ there exists a neighbourhood U and a map $\varphi: U \rightarrow$ \mathbb{R}^{n} such that φ is homeomorphic onto its image. Note that the pair (U, φ) is called a coordinate chart.

Definition 2.2 A manifold M is smooth if it admits an atlas: The atlas is the collection of charts $\left\{\left(U_{\alpha}, \varphi_{\alpha}\right)\right\}$ with a property that any pair U_{α}, U_{β} s.t. their intersection is not empty, the function $\varphi_{\alpha} \circ \varphi_{\beta}^{-1}: \varphi_{\beta}\left(U_{\alpha} \cap U_{\beta}\right) \rightarrow \varphi_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right)$ is a smooth function.

Figure 1: smooth transition function

The transition function is actually a Jacobian matrix which we are familiar with. However, in the case of \mathbb{R}^{n} we have the global chart, so we just need one Jacobian matrix, while on manifolds we need new Jacobian matrix on each pair of charts.

Example 2.3 Smooth manifolds

- \mathbb{R}^{n} n-dimensional Euclidean space
- S^{n}-dimensional sphere
- $S O(n)$ special orthogonal group (Lie group)

2.2 Smooth function

The smooth structure allows us to define the notion of smooth function on M.
Definition 2.4 Let M, N be m, n-dimensional manifold respectively, and $f: M \rightarrow N a$ map. If $\left(U_{\alpha}, \varphi_{\alpha}\right)$ a coordinate chart for p and $\left(V_{i}, \psi_{i}\right)$ a chart for $f(p)$, and if $\psi_{i} \circ f \circ \varphi_{\alpha}^{-1}$ is smooth on its domain, then f is smooth.

Exercise Find the condition for $f: M \rightarrow \mathbb{R}$ to be a smooth function.
What the definition said is that one needs a coordinate chart to decide whether a function is smooth or not.

3 Vectors, covectors and tensors on manifolds

To understand vectors on manifold, one needs to know the notion of vector bundle that is one can attach a vector space on each point of the manifold, so locally the tangent bundle should look like $U \times \mathbb{R}^{n}$.

Figure 2: tangent plane on a car like manifold

3.1 Vector bundle and tangent space

Since we will not prove thing properly, it is sufficient to state an informal definition for vector bundle. A vector bundle (E, π, M), where $\pi: E \rightarrow M$ is a surjection, and E locally looks like $U \times V$, for some neighbourhood of point $p \in M, V$ is a vector space. An important example of vector bundle is the tangent bundle, which can be constructed naturally on a smooth manifold.

Let $a \in \mathbb{R}^{n}, \mathbb{R}_{a}^{n}=\left\{(a, v) ; v \in \mathbb{R}^{n}\right\}$ and $T\left(\mathbb{R}^{n}\right)$ is the collection of maps $\tilde{v}_{a}: C^{\infty}\left(\mathbb{R}^{n}\right) \rightarrow$ \mathbb{R}. The two spaces can be identified by the following relation

$$
\begin{equation*}
\tilde{v}_{a} f=\left.\frac{d}{d t}\right|_{t=0} f(a+t v) \tag{1}
\end{equation*}
$$

From the definition we can deduce that

$$
\begin{align*}
\tilde{v}_{a} f & =\frac{d}{d t}\left(f(a)+t v^{\mu} \partial_{\mu} f(a)+\frac{t^{2}}{2!} v^{\nu} v^{\mu} \partial_{\nu} \partial_{\mu} f(a)+\ldots\right)_{t=0} \\
& =\left(v^{\mu} \partial_{\mu} f(a)+\frac{t}{2} v^{\nu} v^{\mu} \partial_{\nu} \partial_{\mu} f(a)+\ldots\right)_{t=0} \\
& =v^{\mu} \partial_{\mu} f(a) \tag{2}
\end{align*}
$$

It turns out that the map form $(a, v) \mapsto \tilde{v}_{a}$ is an isomorphism (bijective linear map), so one can conclude from Eq. (2) that $\left\{\partial_{\mu}\right\}$ is the basis for $T\left(\mathbb{R}^{n}\right)$.

On a manifold M, we call a linear map $X_{p}: C^{\infty}(M) \rightarrow \mathbb{R}$ derivative at $p \in M$ if it satisfies

$$
\begin{equation*}
X_{p} f g=f(p) X_{p} g+\left(X_{p} f\right) g(p) \tag{3}
\end{equation*}
$$

where $f, g \in C^{\infty}(M)$. The collection of this is denoted by $T_{p} M$, a tangent space (its elements are tangent vectors). One can express the basis of tangent space on the manifold with the basis of $T_{a}\left(\mathbb{R}^{n}\right)$ as follows

$$
\begin{equation*}
\left.\frac{\partial}{\partial x^{\mu}}\right|_{p} f=\left.\frac{\partial}{\partial x^{\mu}}\right|_{\varphi(p)} f \circ \varphi^{-1} \tag{4}
\end{equation*}
$$

The tangent bundle is the disjoint union of tangent space

$$
\begin{equation*}
T M:=\coprod_{p \in M} T_{p} M \tag{5}
\end{equation*}
$$

such that $T M$ is a smooth manifold. elements of $T M$ are vector fields (or sections). Note that we denote the set of smooth vector fields by $\Gamma(T M)$.

Note that in order to get computable expression of vector, one always need to choose a local coordinate, therefore, the result of calculation is valid everywhere on the manifold if it does not depend on the choice of local chart.

3.2 Covector

The cotangent space $T_{p}^{*} M$ is the collection of linear functional $\omega: T_{p} M \rightarrow \mathbb{R}$. Note that $T_{p}^{*} M$ is also a vector space.

On the tangent space there is a natural inner product $g: T_{p} M \times T_{p} M \rightarrow \mathbb{R}$. This is the Riemannian metric (which we will discuss in details very soon.) Let $X_{p}, Y_{p} \in T_{p} M$

$$
\begin{align*}
g\left(X_{p}, Y_{p}\right) & =g\left(\left.X^{\mu} \partial_{\mu}\right|_{p},\left.Y^{\nu} \partial_{\nu}\right|_{p}\right) \\
& =X^{\mu} Y^{\nu} g\left(\partial_{\mu}, \partial_{\nu}\right) \\
& =X^{\mu} Y^{\nu} g_{\mu \nu} . \tag{6}
\end{align*}
$$

Using the Riemannian metric, one can define covector

$$
\begin{equation*}
X^{*}:=g\left(\cdot, X_{p}\right), \tag{7}
\end{equation*}
$$

which is easy to check that it is a linear functional. From the Riesz representation theorem, all linear covectors are in this form. We know that the basis of $T_{p} M$ is $\left\{\partial_{\mu}\right\}$. The following proposition will give us a clue to find a basis for $T_{p}^{*} M$

Proposition 3.1 Let $\left\{E_{i}\right\}$ be a basis of a vector space V. The set of linear functional $\left\{\varepsilon^{i}\right\}$ satisfying

$$
\begin{equation*}
\varepsilon^{i}\left(E_{j}\right)=\delta_{j}^{i}, \tag{8}
\end{equation*}
$$

is the basis for V^{*}, in particular $\operatorname{dim} V=\operatorname{dim} V^{*}$.
One can check that derivative of smooth function define by

$$
\begin{equation*}
d f\left(X_{p}\right)=X_{p} f \tag{9}
\end{equation*}
$$

is also a linear functional i.e. $d f \in T_{p}^{*} M$. Since each x^{μ} is a smooth function, $d x^{\mu}$ is a covector, moreover

$$
\begin{equation*}
d x^{\mu}\left(\left.\partial_{\nu}\right|_{p}\right)=\partial_{\nu} x^{\mu}(p)=\delta_{\nu}^{\mu} . \tag{10}
\end{equation*}
$$

Hence from the previous proposition $\left\{d x^{\mu}\right\}$ is a basis for $T_{p}^{*} M$, and we also write

$$
\begin{equation*}
X^{*}=X_{\mu}^{*} d x^{\mu} . \tag{11}
\end{equation*}
$$

The component of the covector

$$
\begin{equation*}
X_{\nu}^{*}=X_{\mu}^{*} d x^{\mu}\left(\partial_{\nu}\right)=g\left(\partial_{\nu}, X^{\mu} \partial_{\mu}\right)=X^{\mu} g_{\mu \nu} . \tag{12}
\end{equation*}
$$

For convenient we will drop the $*$ and write the component of a covector as X_{μ}.

3.3 Tensors

Let V be a vector space. Tensor is a multilinear map (of rank n)

$$
\begin{equation*}
T: V \times V \times \ldots \times V \rightarrow \mathbb{R} \tag{13}
\end{equation*}
$$

Suppose we have tensors T, and S of rank k and l respectively. Tensor product is a map $T \otimes S: \underbrace{V \times V \times \ldots \times V}_{k+l} \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
T \otimes S\left(X_{1}, \ldots . ., X_{k+l}\right)=T\left(X_{1}, \ldots, X_{k}\right) S\left(X_{k+1}, \ldots, X_{k+l}\right) \tag{14}
\end{equation*}
$$

Example 3.2 If we take $V=T_{p} M$ or $T_{p}^{*} M$ then

- vectors and covectors are tensors of rank $(0,1)$ and $(1,0)$ respectively.
- Riemannian metric g is a tensor $(2,0)$.
- The inverse metric $g^{-1}:=g^{\mu \nu} \partial_{\mu} \otimes \partial_{\nu}$, s.t. $g^{\mu \nu} g_{\nu \sigma}=\delta_{\sigma}^{\mu}$, is a $(0,2)$ tensor.

4 Connection and curvature

4.1 Connection

The connection a way to define derivative for vector field. Why are we interested in finding derivative of vector field in the first place? Because we want to know acceleration of curves on manifold.

Definition 4.1 An affine (or linear) connection is a map $\nabla: T M \times \Gamma(T M) \rightarrow \Gamma(T M)$ satisfying

- $\nabla_{f X+g Y} Z=f \nabla_{X} Z+g \nabla_{Y} Z, \quad$ for $f, g \in C^{\infty}(M)$
- $\nabla_{X}\left(a Z_{1}+b Z_{2}\right)=a \nabla_{X} Z_{1}+b \nabla_{X} Z_{2}$, for $a, b \in \mathbb{R}$
- $\nabla_{X}(f Z)=f \nabla_{X} Z+(X f) Z$, for $f \in C^{\infty}(M)$

Let $\left\{x^{\mu}\right\}$ be a coordinate basis at point $p \in M$. Since the range of ∇ is in $\Gamma(T M)$

$$
\begin{equation*}
\nabla_{\partial_{\mu}} \partial_{\nu}=\Gamma_{\mu \nu}^{\sigma} \partial_{\sigma}, \tag{15}
\end{equation*}
$$

where $\Gamma_{\mu \nu}^{\sigma}$ is a smooth function called Christoffel symbol, and for a smooth vector field $V \in \Gamma(T M)$

$$
\begin{align*}
\nabla_{\partial_{\mu}} V^{\nu} \partial_{\nu} & =\left(\partial_{\mu} V^{\nu}\right) \partial_{\nu}+\Gamma_{\mu \nu}^{\sigma} V^{\nu} \partial_{\sigma} \\
& =\left(\partial_{\mu} V^{\sigma}+\Gamma_{\mu \nu}^{\sigma} V^{\nu}\right) \partial_{\sigma} . \tag{16}
\end{align*}
$$

Proposition 4.2 Every manifold admits an affine connection
A given connection on $T M$ can be extended on tensor bundle $T_{l}^{k} M$ such that

- $\nabla_{\partial_{\mu}} \omega_{\nu}=\partial_{\mu} \omega_{\sigma}-\Gamma_{\mu \nu}^{\sigma} \omega_{\sigma}$
- $\nabla_{\partial_{\mu}} T_{\sigma_{1} \ldots \sigma_{l}}^{\nu_{1} \ldots \nu_{k}}=\partial_{\mu} T_{\sigma_{1}, \ldots, \sigma_{l}}^{\nu_{1} \ldots \nu_{k}}+\sum_{i=1}^{k} \Gamma_{\mu \alpha}^{\nu_{i}} T^{\nu_{1} \ldots \alpha \ldots \nu_{k}}{ }_{\sigma_{1} \ldots \sigma_{l}}-\sum_{i=1}^{l} \Gamma_{\mu \sigma_{i}}^{\alpha} T_{\sigma_{1} \ldots \nu_{i} \ldots \sigma_{l}}^{\nu_{1} \ldots \nu_{k}}$

Obviously the choice of connection is not unique on a Manifold; each choice of Christoffel symbol gives rise to different connection. However, In GR we are interested in a special type of connection called Levi-Civita connection.

Theorem 4.3 Let (M, g) be a Riemannian (or pseudo-Riemannian) manifold. There exists unique affine connection that is metric compatible and torsion free.

We call this connection the Levi-Civita connection. We shall now describe the meaning of the words metric compatible and torsion free. Metric compatibility is the generalisation of the property of derivative on Euclidean space which is compatible with the inner product i.e. for $V, W \in \mathbb{R}^{n}$

$$
\begin{equation*}
\partial_{i}(V \cdot W)=\left(\partial_{i} V\right) \cdot W+V \cdot\left(\partial_{i} W\right), \tag{17}
\end{equation*}
$$

so we require that the Levi-Civita connection to be compatible with the metric

$$
\begin{equation*}
\nabla_{X} g(Y, Z)=g\left(\nabla_{X} Y, Z\right)+g\left(Y, \nabla_{X} Z\right) \tag{18}
\end{equation*}
$$

for $X, Y, Z \in \Gamma(T M)$. A connection is torsion free if it satisfies a condition

$$
\begin{equation*}
\nabla_{X} Y-\nabla_{Y} X=[X, Y] \tag{19}
\end{equation*}
$$

The Christoffel symbol of the Levi-Civita connection can be written in terms of metric tensor as follow

$$
\begin{equation*}
\Gamma_{\mu \nu}^{\sigma}=\frac{g^{\sigma \alpha}}{2}\left(\partial_{\mu} g_{\nu \alpha}+\partial_{\nu} g_{\alpha \mu}-\partial_{\alpha} g_{\mu \nu}\right) . \tag{20}
\end{equation*}
$$

Note that, for convenient, we will write $\nabla_{\partial_{\mu}}:=\nabla_{\mu}$.
Exercise Show that (i) Eq. (18) and (ii) Eq. (19) lead to
(i). $\nabla_{\mu} g_{\alpha \beta}=0$
(ii). $\quad \Gamma_{\mu \nu}^{\sigma}=\Gamma_{\nu \mu}^{\sigma}$.

4.2 Curvature from acceleration

For mathematician, curvature is a local invariant that distinguishes one Riemannian manifold from another. However, physicists are more interested in the dynamics of objects moving in Riemannian manifold. To understand the notion of curvature, let us start with curves in 2-dimensional space. Suppose we have a circle of radius R and $\gamma:[0,1] \rightarrow S^{1}$, is a curve with unit velocity i.e. $\|\dot{\gamma}(t)\|=1$, the curvature at a point $p=\gamma\left(t_{0}\right)$ is defined by $\kappa\left(t_{0}\right)=\left\|\ddot{\gamma}\left(t_{0}\right)\right\|$. From classical mechanics we know that

$$
\begin{equation*}
\|\ddot{\gamma}(t)\|=\frac{\|\dot{\gamma}\|^{2}}{R}=\frac{1}{R} . \tag{21}
\end{equation*}
$$

For more general curves, the curvature can be computed by attaching a circle with appropriate radius to the curve. Note that in this case, the curvature is quite easy to calculate since the manifold (curve) is embedded inside the higher dimension manifold $\left(\mathbb{R}^{2}\right)$. However, one can obtain intrinsic (no embedding require) definition of curvature using the notion of parallel transport.

Figure 3: parallel transport on a shpere
Parallel transport is the way to transport a vector along vector fields such that there is no acceleration. In curve spacetime, if a vector Z_{p} is parallel transported along a closed curve back to its starting point, then one may obtain a new vector \tilde{Z}_{p} that is different from the original one. The infinitesimal difference between these vectors give rise to a linear map which we call curvature tensor. For $X, Y \in \Gamma(T M)$, the map $R(X, Y): \Gamma(T M) \rightarrow \Gamma(T M)$ is a smooth linear map defined by

$$
\begin{equation*}
R(X, Y) Z:=\left[\nabla_{X}, \nabla_{Y}\right] Z+\nabla_{[X, Y]} Z . \tag{22}
\end{equation*}
$$

Suppose we choose X, Y to be basis vectors

$$
\begin{align*}
R_{\mu \nu \rho}^{\sigma} Z^{\rho} \partial_{\sigma}:= & R\left(\partial_{\mu}, \partial_{\nu}\right)_{\rho}^{\sigma} Z^{\rho} \partial_{\sigma} \\
= & \nabla_{\mu} \nabla_{\nu}\left(Z^{\rho} \partial_{\rho}\right)-\nabla_{\nu} \nabla_{\mu}\left(Z^{\rho} \partial_{\rho}\right)+\nabla_{\left[\partial_{\mu}, \partial_{\nu}\right]} Z^{\rho} \partial_{\rho} \\
= & \nabla_{\mu}\left(\partial_{\nu} Z^{\rho} \partial_{\rho}+Z^{\rho} \Gamma_{\nu \rho}^{\sigma} \partial_{\sigma}\right)-\nabla_{\nu}\left(\partial_{\mu} Z^{\rho} \partial_{\rho}+Z^{\rho} \Gamma_{\mu \rho}^{\sigma} \partial_{\sigma}\right) \\
= & \left(\partial_{\mu} \partial_{\nu} Z^{\rho}\right) \partial_{\rho}+\partial_{\nu} Z^{\rho} \Gamma_{\mu \rho}^{\sigma} \partial_{\sigma}+\partial_{\mu} Z^{\rho} \Gamma_{\nu \rho}^{\sigma} \partial_{\sigma} \\
& +Z^{\rho}\left(\partial_{\mu} \Gamma_{\nu \rho}^{\sigma}\right) \partial_{\sigma}+Z^{\rho} \Gamma_{\nu \rho}^{\sigma} \Gamma_{\mu \sigma}^{\alpha} \partial_{\alpha} \\
& -\left(\partial_{\nu} \partial_{\mu} Z^{\rho}\right) \partial_{\rho}-\partial_{\mu} Z^{\rho} \Gamma_{\nu \rho}^{\sigma} \partial_{\sigma}-\partial_{\nu} Z^{\rho} \Gamma_{\mu \rho}^{\sigma} \partial_{\sigma} \\
& -Z^{\rho}\left(\partial_{\nu} \Gamma_{\mu \rho}^{\sigma}\right) \partial_{\sigma}-Z^{\rho} \Gamma_{\mu \rho}^{\sigma} \Gamma_{\nu \sigma}^{\alpha} \partial_{\alpha} \\
= & \left(\partial_{\mu} \Gamma_{\nu \rho}^{\sigma}-\partial_{\nu} \Gamma_{\mu \rho}^{\sigma}+\Gamma_{\mu \alpha}^{\sigma} \Gamma_{\nu \rho}^{\alpha}-\Gamma_{\nu \alpha}^{\sigma} \Gamma_{\mu \rho}^{\alpha}\right) Z^{\rho} \partial_{\sigma} \tag{23}
\end{align*}
$$

so we have

$$
\begin{equation*}
R_{\mu \nu \rho}^{\sigma}=\partial_{\mu} \Gamma_{\nu \rho}^{\sigma}-\partial_{\nu} \Gamma_{\mu \rho}^{\sigma}+\Gamma_{\mu \alpha}^{\sigma} \Gamma_{\nu \rho}^{\alpha}-\Gamma_{\nu \alpha}^{\sigma} \Gamma_{\mu \rho}^{\alpha} \tag{24}
\end{equation*}
$$

4.3 Properties of curvature tensor

Proposition 4.4 The curvature tensor has the following properties

- $R_{\mu \nu \rho \sigma}=-R_{\nu \mu \rho \sigma}$
- $R_{\mu \nu \rho \sigma}=R_{\rho \sigma \mu \nu}$
- $R_{\mu \nu \rho \sigma}+R_{\nu \rho \mu \sigma}+R_{\rho \mu \nu \sigma}=0$

The third property is called the algebraic Bianchi identity (or the first Bianchi identity). From curvature tensor, one can define Ricci tensor $R_{\mu \nu}$, and Ricci scalar (or scalar curvature) R as

$$
\begin{equation*}
R_{\mu \nu}:=g^{\rho \sigma} R_{\rho \mu \nu \sigma} \quad, \quad R:=g^{\mu \nu} R_{\mu \nu} \tag{25}
\end{equation*}
$$

We will se shortly that these two quantities play a crucial role in Einstein equation.
Exercise Show that $R_{\mu \nu}$ is symmetric tensor.
Proposition 4.5 (Differential Bianchi identity) the total derivative of curvature tensor satisfies the following property

$$
\begin{equation*}
\nabla_{\alpha} R_{\mu \nu \rho \sigma}+\nabla_{\rho} R_{\mu \nu \sigma \alpha}+\nabla_{\sigma} R_{\mu \nu \alpha \rho}=0 \tag{26}
\end{equation*}
$$

Contract the differential Bianchi identity with the metric one obtains

$$
\begin{align*}
0 & =g^{\mu \sigma} g^{\alpha \nu}\left(\nabla_{\alpha} R_{\mu \nu \rho \sigma}+\nabla_{\rho} R_{\mu \nu \sigma \alpha}+\nabla_{\sigma} R_{\mu \nu \alpha \rho}\right) \\
& =g^{\mu \sigma}\left(\nabla_{\alpha} R_{\rho \sigma \mu}^{\alpha}-\nabla_{\rho} R_{\mu \sigma}+\nabla_{\sigma} R_{\mu \rho}\right) \\
& =2 \nabla_{\alpha} R_{\rho}^{\alpha}-\nabla_{\rho} R \\
& =2 g_{\rho \beta} \nabla_{\alpha}\left(R^{\beta \alpha}-\frac{1}{2} g^{\beta \alpha} R\right) \tag{27}
\end{align*}
$$

so we have that $G^{\mu \nu}:=R^{\mu \nu}-\frac{1}{2} g^{\mu \nu} R$ has a vanishing divergence.

5 Einstein equation

Einstein equation is the equation that describes how mass and energy distort the curvature (which leads to acceleration) of spacetime.

5.1 Energy-Momentum tensor

An energy-momentum tensor $T^{\mu \nu}$ is a symmetric tensor defined by

- T^{00} energy density ρ
- $T^{0 i}$ energy flux through surface normal to x^{i}
- $T^{i j}$ momentum flux in direction of x^{i} through surface normal to x^{j}

Let us look at an example of energy momentum tensor
Example 5.1 Energy-momentum tensor

- Electromagnetic field

$$
\begin{equation*}
T^{\mu \nu}=F_{\alpha}^{\mu} F^{\alpha \nu}-\frac{1}{4} g^{\mu \nu} F^{\alpha \beta} F_{\alpha \beta}, \tag{28}
\end{equation*}
$$

where $F_{\mu \nu}$ is the field strength tensor.

- Perfect fluid (which will be important when we start doing cosmology.)

$$
\begin{equation*}
T^{\mu \nu}=(\rho+P) u^{\mu} u^{\nu}+P g^{\mu \nu}, \tag{29}
\end{equation*}
$$

where ρ is energy density, P is pressure and u is a normalised timelike 4 -velocity i.e. $u^{2}=-1$.

One can check that the two energy momentum tensors are divergence free (given that the matter fields obey their equation of motion.) Since Einstein tensor and energy momentum tensor are both divergence free, we can put

$$
\begin{equation*}
G^{\mu \nu}=\kappa T^{\mu \nu} \tag{30}
\end{equation*}
$$

where κ is some (dimensionful) constant. The value of κ can be determined when consider Newtonian limit i.e. $\kappa=8 \pi G$.

5.2 Einstein Hilbert action

There is an alternative way of deriving Einstein equation using an action functional (the map from the vector space of function to real number). The action is called EinsteinHilbert action

$$
\begin{equation*}
S=\int_{M} d x^{4} \sqrt{-g}\left(\frac{1}{\kappa} R+\mathcal{L}_{m}\right) \tag{31}
\end{equation*}
$$

Vary Eq. (31) with respect to the metric

$$
\begin{equation*}
0=\delta S=\int_{M} d x^{4}\left[\delta \sqrt{-g}\left(\frac{1}{\kappa} R+\mathcal{L}_{m}\right)+\sqrt{-g}\left(\frac{1}{\kappa} \delta R+\delta \mathcal{L}_{m}\right)\right. \tag{32}
\end{equation*}
$$

To find the expression of $\delta \sqrt{-g}$ in terms of $\delta g^{\mu \nu}$, let us consider a symmetric matrix M (so that it is diagonalisable), and let $C^{-1} M C=D=\operatorname{diag}\left(D_{11}, D_{22}, \ldots, D_{n n}\right)$. Suppose t is a very small parameter such that we can ignore $t^{n}, n \geq 2$

$$
\begin{align*}
\operatorname{det}(\mathbb{1}+t M) & =\operatorname{det}\left(C^{-1} C+t C^{-1} D C\right) \\
& =\operatorname{det}(\mathbb{1}+t D) \\
& =\left(1+t D_{11}\right)\left(1+t D_{22}\right) \ldots\left(1+t D_{n n}\right) \\
& =1+t \sum_{i=1}^{n} D_{i i}+t^{2} \sum_{i \neq j}^{n} D_{i i} D_{j j}+\ldots \\
& \approx 1+\operatorname{tr}(t D)=1+\operatorname{tr}(t M) \tag{33}
\end{align*}
$$

Hence for determinant of the metric

$$
\begin{align*}
\delta g & =\operatorname{det}\left(g_{\mu \nu}+\delta g_{\mu \nu}\right)-g \\
& =g\left[\operatorname{det}\left(g^{\alpha \mu}\right) \operatorname{det}\left(g_{\mu \nu}+\delta g_{\mu \nu}\right)-1\right] \\
& =g\left[\operatorname{det}\left(\delta_{\nu}^{\alpha}+g^{\alpha \mu} \delta g_{\mu \nu}\right)-1\right] \\
& \approx g \operatorname{tr}\left(g^{\alpha \mu} \delta g_{\mu \nu}\right) \\
& =g g^{\mu \nu} \delta g_{\mu \nu}=-g g_{\mu \nu} \delta g^{\mu \nu} . \tag{34}
\end{align*}
$$

Put this back in Eq. (32) we obtain

$$
\begin{align*}
0 & =\int_{M} d x^{4}\left[-\frac{1}{2} \sqrt{-g} g_{\mu \nu} \delta g^{\mu \nu}\left(\frac{1}{\kappa} R+\mathcal{L}_{m}\right)+\sqrt{-g}\left(\frac{1}{\kappa} \delta g^{\mu \nu} R_{\mu \nu}+\frac{1}{\kappa} g^{\mu \nu} \delta R_{\mu \nu}+\delta \mathcal{L}_{m}\right)\right. \\
& =\int_{M} d^{4} x \sqrt{-g}\left[\frac{1}{\kappa}\left(R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R\right) \delta g^{\mu \nu}+\left(\frac{\delta \mathcal{L}_{m}}{\delta g^{\mu \nu}}-\frac{1}{2} g_{\mu \nu} \mathcal{L}_{m}\right) \delta g^{\mu \nu}+\frac{1}{\kappa} g^{\mu \nu} \delta R_{\mu \nu}\right] \tag{35}
\end{align*}
$$

Notice that if we define

$$
\begin{equation*}
T^{\mu \nu}=-\frac{\delta \mathcal{L}_{m}}{\delta g_{\mu \nu}}+\frac{1}{2} g^{\mu \nu} \mathcal{L}_{m} \tag{36}
\end{equation*}
$$

and $g^{\mu \nu} \delta R_{\mu \nu}$ somehow vanishes then we will obtain Einstein equation. Let us consider $g^{\mu \nu} \delta R_{\mu \nu}$.

$$
\begin{align*}
& g^{\mu \nu} \delta R_{\mu \nu}=g^{\mu \nu}\left(\partial_{\alpha} \delta \Gamma_{\mu \nu}^{\alpha}-\partial_{\mu} \delta \Gamma_{\alpha \nu}^{\alpha}+\delta \Gamma_{\alpha \beta}^{\alpha} \Gamma_{\mu \nu}^{\beta}+\Gamma_{\alpha \beta}^{\alpha} \delta \Gamma_{\mu \nu}^{\beta}\right. \\
&\left.-\delta \Gamma_{\mu \beta}^{\alpha} \Gamma_{\alpha \nu}^{\beta}-\Gamma_{\mu \beta}^{\alpha} \delta \Gamma_{\alpha \nu}^{\beta}\right) \\
&=g^{\mu \nu}\left(\partial_{\alpha} \delta \Gamma_{\mu \nu}^{\alpha}-\Gamma_{\mu \beta}^{\alpha} \delta \Gamma_{\alpha \nu}^{\beta}-\Gamma_{\alpha \nu}^{\beta} \delta \Gamma_{\mu \beta}^{\alpha}+\Gamma_{\alpha \beta}^{\alpha} \delta \Gamma_{\mu \nu}^{\beta}\right. \\
&\left.-\partial_{\mu} \delta \Gamma_{\alpha \nu}^{\alpha}+\Gamma_{\mu \alpha}^{\beta} \delta \Gamma_{\beta \nu}^{\alpha}+\Gamma_{\mu \nu}^{\beta} \delta \Gamma_{\alpha \beta}^{\alpha}-\Gamma_{\mu \alpha}^{\beta} \delta \Gamma_{\beta \nu}^{\alpha}\right) \\
&=\left(\nabla_{\alpha} g^{\mu \nu} \delta \Gamma_{\mu \nu}^{\alpha}-\nabla_{\mu} g^{\mu \nu} \delta \Gamma_{\alpha \nu}^{\alpha}\right), \tag{37}
\end{align*}
$$

which is the boundary term, therefore, using divergence theorem, the integral of (37) vanishes. Hence, we obtain Einstein equation.

