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1 Introduction

In Newtonian gravity, gravity is a mysterious force pulling objects together and spacetime
is just a non-interactive background. In this picture, the trajectory of an object in the
spacetime (space is a 3-dimensional Euclidean space) under the influence of gravitational
field is not a shortest path. Unlike Newtonian gravity, general relativity (GR) is a theory
of spacetime and how energy and matter a↵ect the geometry of spacetime. In GR space,
and time play a crucial role in the description of gravity, and any free falling object in GR
always take the shortest path. Of course such a phenomenon does not occur in Euclidean
space. The type of geometry that we use in GR is Riemannian geometry (or rather psuedo-
Riemannian geometry), which is what we will discuss next.

2 Smooth manifold

A topological space is a set that we know how to define a continuous function on it. A
smooth manifold is a topological space M with some extra structures which allow us to
define the notion of smoothness (di↵erentiable).
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2.1 Definition of manifold

Definition 2.1 A topological space M is a manifold if it satisfies the following properties

• M is a Hausdor↵: any two points can be distinct by two disjoint open sets.

• second countable: there exists a countable basis for topology.

• Locally Euclidean: for any p 2 M there exists a neighbourhood U and a map ' : U !
n such that ' is homeomorphic onto its image. Note that the pair (U,') is called

a coordinate chart.

Definition 2.2 A manifold M is smooth if it admits an atlas: The atlas is the collection
of charts {(U↵,'↵)} with a property that any pair U↵, U� s.t. their intersection is not
empty, the function '↵ � '�1

� : '�(U↵ \ U�) ! '↵(U↵ \ U�) is a smooth function.

Figure 1: smooth transition function

The transition function is actually a Jacobian matrix which we are familiar with. How-
ever, in the case of n we have the global chart, so we just need one Jacobian matrix,
while on manifolds we need new Jacobian matrix on each pair of charts.

Example 2.3 Smooth manifolds

• n n-dimensional Euclidean space

• Sn n-dimensional sphere

• SO(n) special orthogonal group (Lie group)
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2.2 Smooth function

The smooth structure allows us to define the notion of smooth function on M .

Definition 2.4 Let M,N be m, n-dimensional manifold respectively, and f : M ! N a
map. If (U↵,'↵) a coordinate chart for p and (Vi, i) a chart for f(p), and if  i � f � '�1

↵

is smooth on its domain, then f is smooth.

Exercise Find the condition for f : M ! to be a smooth function.

What the definition said is that one needs a coordinate chart to decide whether a function
is smooth or not.

3 Vectors, covectors and tensors on manifolds

To understand vectors on manifold, one needs to know the notion of vector bundle that is
one can attach a vector space on each point of the manifold, so locally the tangent bundle
should look like U ⇥ n.

Figure 2: tangent plane on a car like manifold
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3.1 Vector bundle and tangent space

Since we will not prove thing properly, it is su�cient to state an informal definition for
vector bundle. A vector bundle (E,⇡,M), where ⇡ : E ! M is a surjection, and E locally
looks like U⇥V , for some neighbourhood of point p 2 M , V is a vector space. An important
example of vector bundle is the tangent bundle, which can be constructed naturally on a
smooth manifold.

Let a 2 n, n
a = {(a, v); v 2 n} and T ( n) is the collection of maps ṽa : C1( n) !

. The two spaces can be identified by the following relation

ṽaf =
d

dt

����
t=0

f(a+ tv) . (1)

From the definition we can deduce that

ṽaf =
d

dt

✓
f(a) + tvµ@µf(a) +

t2

2!
v⌫vµ@⌫@µf(a) + ...

◆

t=0

=

✓
vµ@µf(a) +

t

2
v⌫vµ@⌫@µf(a) + ...

◆

t=0

= vµ@µf(a) . (2)

It turns out that the map form (a, v) 7! ṽa is an isomorphism (bijective linear map), so
one can conclude from Eq. (2) that {@µ} is the basis for T ( n).

On a manifold M , we call a linear map Xp : C1(M) ! derivative at p 2 M if it
satisfies

Xpfg = f(p)Xpg + (Xpf)g(p) , (3)

where f, g 2 C1(M). The collection of this is denoted by TpM , a tangent space (its
elements are tangent vectors). One can express the basis of tangent space on the manifold
with the basis of Ta( n) as follows

@

@xµ

����
p

f =
@

@xµ

����
'(p)

f � '�1 . (4)

The tangent bundle is the disjoint union of tangent space

TM :=
a

p2M
TpM , (5)

such that TM is a smooth manifold. elements of TM are vector fields (or sections). Note
that we denote the set of smooth vector fields by �(TM).

Note that in order to get computable expression of vector, one always need to choose
a local coordinate, therefore, the result of calculation is valid everywhere on the manifold
if it does not depend on the choice of local chart.
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3.2 Covector

The cotangent space T ⇤
pM is the collection of linear functional ! : TpM ! . Note that

T ⇤
pM is also a vector space.
On the tangent space there is a natural inner product g : TpM ⇥ TpM ! . This is

the Riemannian metric (which we will discuss in details very soon.) Let Xp, Yp 2 TpM

g(Xp, Yp) = g(Xµ@µ|p, Y ⌫@⌫ |p)
= XµY ⌫g(@µ, @⌫)

= XµY ⌫gµ⌫ . (6)

Using the Riemannian metric, one can define covector

X⇤ := g( · , Xp) , (7)

which is easy to check that it is a linear functional. From the Riesz representation theorem,
all linear covectors are in this form. We know that the basis of TpM is {@µ}. The following
proposition will give us a clue to find a basis for T ⇤

pM

Proposition 3.1 Let {Ei} be a basis of a vector space V . The set of linear functional {"i}
satisfying

"i(Ej) = �ij , (8)

is the basis for V ⇤, in particular dimV = dimV ⇤.

One can check that derivative of smooth function define by

df(Xp) = Xpf (9)

is also a linear functional i.e. df 2 T ⇤
pM . Since each xµ is a smooth function, dxµ is a

covector, moreover
dxµ(@⌫ |p) = @⌫x

µ(p) = �µ⌫ . (10)

Hence from the previous proposition {dxµ} is a basis for T ⇤
pM , and we also write

X⇤ = X⇤
µdx

µ . (11)

The component of the covector

X⇤
⌫ = X⇤

µdx
µ(@⌫) = g(@⌫ , X

µ@µ) = Xµgµ⌫ . (12)

For convenient we will drop the ⇤ and write the component of a covector as Xµ.
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3.3 Tensors

Let V be a vector space. Tensor is a multilinear map (of rank n)

T : V ⇥ V ⇥ ....⇥ V ! (13)

Suppose we have tensors T , and S of rank k and l respectively. Tensor product is a map
T ⌦ S : V ⇥ V ⇥ ...⇥ V| {z }

k+l

! defined by

T ⌦ S(X1, ....., Xk+l) = T (X1, ..., Xk)S(Xk+1, ..., Xk+l) (14)

Example 3.2 If we take V = TpM or T ⇤
pM then

• vectors and covectors are tensors of rank (0, 1) and (1, 0) respectively.

• Riemannian metric g is a tensor (2, 0).

• The inverse metric g�1 := gµ⌫@µ ⌦ @⌫ , s.t. gµ⌫g⌫� = �µ� , is a (0, 2) tensor.

4 Connection and curvature

4.1 Connection

The connection a way to define derivative for vector field. Why are we interested in finding
derivative of vector field in the first place? Because we want to know acceleration of curves
on manifold.

Definition 4.1 An a�ne (or linear) connection is a map r : TM ⇥ �(TM) ! �(TM)
satisfying

• rfX+gY Z = frXZ + grY Z , for f, g 2 C1(M)

• rX(aZ1 + bZ2) = arXZ1 + brXZ2 , for a, b 2

• rX(fZ) = frXZ + (Xf)Z , for f 2 C1(M)

Let {xµ} be a coordinate basis at point p 2 M . Since the range of r is in �(TM)

r@µ@⌫ = ��
µ⌫@� , (15)

where ��
µ⌫ is a smooth function called Christo↵el symbol, and for a smooth vector field

V 2 �(TM)

r@µV
⌫@⌫ = (@µV

⌫)@⌫ + ��
µ⌫V

⌫@�

= (@µV
� + ��

µ⌫V
⌫)@� . (16)
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Proposition 4.2 Every manifold admits an a�ne connection

A given connection on TM can be extended on tensor bundle T k
l M such that

• r@µ!⌫ = @µ!� � ��
µ⌫!�

• r@µT
⌫1....⌫k

�1...�l
= @µT

⌫1....⌫k
�1,...,�l

+
Pk

i=1 �
⌫i
µ↵T

⌫1...↵...⌫k
�1...�l

�
Pl

i=1 �
↵
µ�i

T ⌫1....⌫k
�1...�i...�l

Obviously the choice of connection is not unique on a Manifold; each choice of Christo↵el
symbol gives rise to di↵erent connection. However, In GR we are interested in a special
type of connection called Levi-Civita connection.

Theorem 4.3 Let (M, g) be a Riemannian (or pseudo-Riemannian) manifold. There ex-
ists unique a�ne connection that is metric compatible and torsion free.

We call this connection the Levi-Civita connection. We shall now describe the meaning of
the words metric compatible and torsion free. Metric compatibility is the generalisation of
the property of derivative on Euclidean space which is compatible with the inner product
i.e. for V,W 2 n

@i(V ·W ) = (@iV ) ·W + V · (@iW ) , (17)

so we require that the Levi-Civita connection to be compatible with the metric

rXg(Y, Z) = g(rXY, Z) + g(Y,rXZ) , (18)

for X,Y, Z 2 �(TM). A connection is torsion free if it satisfies a condition

rXY �rY X = [X,Y ] . (19)

The Christo↵el symbol of the Levi-Civita connection can be written in terms of metric
tensor as follow

��
µ⌫ =

g�↵

2
(@µg⌫↵ + @⌫g↵µ � @↵gµ⌫) . (20)

Note that, for convenient, we will write r@µ := rµ .

Exercise Show that (i) Eq. (18) and (ii) Eq. (19) lead to

(i). rµg↵� = 0

(ii). ��
µ⌫ = ��

⌫µ .
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4.2 Curvature from acceleration

For mathematician, curvature is a local invariant that distinguishes one Riemannian man-
ifold from another. However, physicists are more interested in the dynamics of objects
moving in Riemannian manifold. To understand the notion of curvature, let us start with
curves in 2-dimensional space. Suppose we have a circle of radius R and � : [0, 1] ! S1, is
a curve with unit velocity i.e. k�̇(t)k = 1, the curvature at a point p = �(t0) is defined by
(t0) = k�̈(t0)k. From classical mechanics we know that

k�̈(t)k =
k�̇k2

R
=

1

R
. (21)

For more general curves, the curvature can be computed by attaching a circle with appro-
priate radius to the curve. Note that in this case, the curvature is quite easy to calculate
since the manifold (curve) is embedded inside the higher dimension manifold ( 2). How-
ever, one can obtain intrinsic (no embedding require) definition of curvature using the
notion of parallel transport.

Figure 3: parallel transport on a shpere

Parallel transport is the way to transport a vector along vector fields such that there
is no acceleration. In curve spacetime, if a vector Zp is parallel transported along a closed
curve back to its starting point, then one may obtain a new vector Z̃p that is di↵erent from
the original one. The infinitesimal di↵erence between these vectors give rise to a linear map
which we call curvature tensor. For X,Y 2 �(TM), the map R(X,Y ) : �(TM) ! �(TM)
is a smooth linear map defined by

R(X,Y )Z := [rX ,rY ]Z +r[X,Y ]Z . (22)
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Suppose we choose X,Y to be basis vectors

R �
µ⌫⇢ Z⇢@� := R(@µ, @⌫)

�
⇢Z

⇢@�

= rµr⌫(Z
⇢@⇢)�r⌫rµ(Z

⇢@⇢) +r[@µ,@⌫ ]Z
⇢@⇢

= rµ(@⌫Z
⇢@⇢ + Z⇢��

⌫⇢@�)�r⌫(@µZ
⇢@⇢ + Z⇢��

µ⇢@�)

= (@µ@⌫Z
⇢)@⇢ + @⌫Z

⇢��
µ⇢@� + @µZ

⇢��
⌫⇢@�

+ Z⇢(@µ�
�
⌫⇢)@� + Z⇢��

⌫⇢�
↵
µ�@↵

� (@⌫@µZ
⇢)@⇢ � @µZ

⇢��
⌫⇢@� � @⌫Z

⇢��
µ⇢@�

� Z⇢(@⌫�
�
µ⇢)@� � Z⇢��

µ⇢�
↵
⌫�@↵

= (@µ�
�
⌫⇢ � @⌫�

�
µ⇢ + ��

µ↵�
↵
⌫⇢ � ��

⌫↵�
↵
µ⇢)Z

⇢@� , (23)

so we have
R �

µ⌫⇢ = @µ�
�
⌫⇢ � @⌫�

�
µ⇢ + ��

µ↵�
↵
⌫⇢ � ��

⌫↵�
↵
µ⇢ . (24)

4.3 Properties of curvature tensor

Proposition 4.4 The curvature tensor has the following properties

• Rµ⌫⇢� = �R⌫µ⇢�

• Rµ⌫⇢� = R⇢�µ⌫

• Rµ⌫⇢� +R⌫⇢µ� +R⇢µ⌫� = 0

The third property is called the algebraic Bianchi identity (or the first Bianchi identity).
From curvature tensor, one can define Ricci tensor Rµ⌫ , and Ricci scalar (or scalar curva-
ture) R as

Rµ⌫ := g⇢�R⇢µ⌫� , R := gµ⌫Rµ⌫ . (25)

We will se shortly that these two quantities play a crucial role in Einstein equation.

Exercise Show that Rµ⌫ is symmetric tensor.

Proposition 4.5 (Di↵erential Bianchi identity) the total derivative of curvature tensor
satisfies the following property

r↵Rµ⌫⇢� +r⇢Rµ⌫�↵ +r�Rµ⌫↵⇢ = 0 . (26)

Contract the di↵erential Bianchi identity with the metric one obtains

0 = gµ�g↵⌫(r↵Rµ⌫⇢� +r⇢Rµ⌫�↵ +r�Rµ⌫↵⇢)

= gµ�(r↵R
↵

⇢�µ �r⇢Rµ� +r�Rµ⇢)

= 2r↵R
↵
⇢ �r⇢R

= 2g⇢�r↵(R
�↵ � 1

2
g�↵R) , (27)
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so we have that Gµ⌫ := Rµ⌫ � 1
2g

µ⌫R has a vanishing divergence.

5 Einstein equation

Einstein equation is the equation that describes how mass and energy distort the curvature
(which leads to acceleration) of spacetime.

5.1 Energy-Momentum tensor

An energy-momentum tensor Tµ⌫ is a symmetric tensor defined by

• T 00 energy density ⇢

• T 0i energy flux through surface normal to xi

• T ij momentum flux in direction of xi through surface normal to xj

Let us look at an example of energy momentum tensor

Example 5.1 Energy-momentum tensor

• Electromagnetic field

Tµ⌫ = Fµ
↵F

↵⌫ � 1

4
gµ⌫F↵�F↵� , (28)

where Fµ⌫ is the field strength tensor.

• Perfect fluid (which will be important when we start doing cosmology.)

Tµ⌫ = (⇢+ P )uµu⌫ + Pgµ⌫ , (29)

where ⇢ is energy density, P is pressure and u is a normalised timelike 4-velocity i.e.
u2 = �1.

One can check that the two energy momentum tensors are divergence free (given that the
matter fields obey their equation of motion.) Since Einstein tensor and energy momentum
tensor are both divergence free, we can put

Gµ⌫ = Tµ⌫ , (30)

where  is some (dimensionful) constant. The value of  can be determined when consider
Newtonian limit i.e.  = 8⇡G.

10



5.2 Einstein Hilbert action

There is an alternative way of deriving Einstein equation using an action functional (the
map from the vector space of function to real number). The action is called Einstein-
Hilbert action

S =

Z

M
dx4

p
�g(

1


R+ Lm) . (31)

Vary Eq. (31) with respect to the metric

0 = �S =

Z

M
dx4[�

p
�g(

1


R+ Lm) +

p
�g(

1


�R+ �Lm) . (32)

To find the expression of �
p
�g in terms of �gµ⌫ , let us consider a symmetric matrix M

(so that it is diagonalisable), and let C�1MC = D = diag(D11, D22, ..., Dnn). Suppose t is
a very small parameter such that we can ignore tn, n � 2

det( + tM) = det(C�1C + tC�1DC)

= det( + tD)

= (1 + tD11)(1 + tD22)...(1 + tDnn)

= 1 + t
nX

i=1

Dii + t2
nX

i 6=j

DiiDjj + ...

⇡ 1 + tr(tD) = 1 + tr(tM) . (33)

Hence for determinant of the metric

�g = det(gµ⌫ + �gµ⌫)� g

= g[det(g↵µ) det(gµ⌫ + �gµ⌫)� 1]

= g[det(�↵⌫ + g↵µ�gµ⌫)� 1]

⇡ g tr(g↵µ�gµ⌫)

= ggµ⌫�gµ⌫ = �ggµ⌫�g
µ⌫ . (34)

Put this back in Eq. (32) we obtain

0 =

Z

M
dx4[�1

2

p
�ggµ⌫�g

µ⌫(
1


R+ Lm) +

p
�g(

1


�gµ⌫Rµ⌫ +

1


gµ⌫�Rµ⌫ + �Lm)

=

Z

M
d4x

p
�g[

1


(Rµ⌫ �

1

2
gµ⌫R)�gµ⌫ + (

�Lm

�gµ⌫
� 1

2
gµ⌫Lm)�gµ⌫ +

1


gµ⌫�Rµ⌫ ] . (35)

Notice that if we define

Tµ⌫ = ��Lm

�gµ⌫
+

1

2
gµ⌫Lm , (36)
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and gµ⌫�Rµ⌫ somehow vanishes then we will obtain Einstein equation. Let us consider
gµ⌫�Rµ⌫ .

gµ⌫�Rµ⌫ = gµ⌫
⇣
@↵��

↵
µ⌫ � @µ��

↵
↵⌫ + ��↵

↵��
�
µ⌫ + �↵

↵���
�
µ⌫

� ��↵
µ��

�
↵⌫ � �↵

µ���
�
↵⌫

⌘

= gµ⌫
⇣
@↵��

↵
µ⌫ � �↵

µ���
�
↵⌫ � ��

↵⌫��
↵
µ� + �↵

↵���
�
µ⌫

� @µ��
↵
↵⌫ + ��

µ↵��
↵
�⌫ + ��

µ⌫��
↵
↵� � ��

µ↵��
↵
�⌫

⌘

=
�
r↵g

µ⌫��↵
µ⌫ �rµg

µ⌫��↵
↵⌫

�
, (37)

which is the boundary term, therefore, using divergence theorem, the integral of (37)
vanishes. Hence, we obtain Einstein equation.
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