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1 Gravitational Perturbation Theory

Small Fluctuations
As an essential feature of the analysis presented here, we assume that during most of the history of

the universe all departures from homogeneity and isotropy have been small, so that they can be treated
as first-order perturbations. Because the observable universe is nearly homogeneous, and its spatial
curvature either vanishes or is negligible until very near the present, we will take the unperturbed
metric to have the Robertson-Walker form with curvature constant K = 0,

g00 = −1, gi0 = g0i = 0, gij = a2(t) δij, (1.1)

where i, j = 1, 2, 3 for spatial dimensions and δij is the Kronecker delta. The total perturbed metric
is then

gµν = gµν + hµν, (1.2)

where gµν is the unperturbed K = 0 Robertson-Walker metric and hµν = hνµ is a small torsionless
perturbation. We also have the inverse metric as

g 00 = −1, g i0 = g 0i = 0, g ij = a−2(t) δij. (1.3)

The inverse of the metric is perturbed by

hµν ≡ gµν − g µν = −g µρ g νσ hρσ, (1.4)

with components
hij = −a−4hij, hi0 = a−2hi0, h00 = −h00. (1.5)

Note the − sign in Eq. (1.4) (Exercise); in our notation, the perturbation δgµν to gµν is not given by
simply using the unperturbed metric to raise the indices on δgµν.

Field Equations
The metric perturbation produces a perturbation to the affine connection

δΓµνλ =
1
2

g µρ
[
−2hρσΓ σνλ + ∂λhρν + ∂νhρλ − ∂ρhλν

]
. (1.6)

For K = 0, the only non-vanishing components of the unperturbed affine connection are given by

Γ i
j0 = Γ

i
0j =

ȧ
a
δij, Γ 0

ij = aȧ δij. (1.7)

Thus Eq. (1.6) gives the components of the perturbed affine connection as

δΓi
jk =

1
2a2

(−2aȧ hi0 δjk + ∂khij + ∂jhik − ∂ihjk
)

(1.8)

δΓi
j0 =

1
2a2

(
−2ȧ

a
hij + ḣij + ∂ jhi0 − ∂ihj0

)
(1.9)

δΓ0
ij =

1
2

(
2aȧ δij h00 − ∂jhi0 − ∂ihj0 + ḣij

)
(1.10)
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δΓi
00 =

1
2a2

(
2ḣi0 − ∂ih00

)
(1.11)

δΓ0
i0 =

ȧ
a

hi0 −
1
2
∂ih00 (1.12)

δΓ0
00 = −

1
2

ḣ00 (1.13)

In particular, we will need

δΓλλµ = δµ

[
1

2a2
hii −

1
2

h00

]
. (1.14)

To write the Einstein equations, we need the perturbation to the Ricci tensor

δRµκ =
∂δΓλµκ

∂xλ
−
∂δΓλµλ

∂xκ
+ δΓηµκ Γ

ν
νη + δΓ

ν
νη Γ

η
µκ − δΓηµν Γ νκη − δΓνκη Γ ηµν, (1.15)

with components

δRjk =
1
2
∂j∂kh00 +

(
2ȧ2 + aä

)
δjkh00 +

1
2

aȧ δjkḣ00 −
1
2

(
∂jḣk0 + ∂kḣj0

)
− 1

2a2

(
∇2hjk − ∂i∂jhik − ∂i∂khij + ∂j∂khii

)
− ȧ

2a
(
∂jhk0 + ∂khj0

)
+

1
2

ḧjk −
ȧ

2a

(
ḣjk − δjkḣii

)
− ȧ2

a2

(−2hjk + δjkhii
) − ȧ

a
δjk∂ihi0, (1.16)

δR0j = δRj0 = −
ȧ
a
∂jh00 −

1
2a2

(
∇2hj0 − ∂j∂ihi0

)
+

(
ä
a
+

2ȧ2

a2

)
hj0

−1
2
∂

∂t

[
1
a2

(
∂jhkk − ∂khkj

)]
, (1.17)

δR00 = −
1

2a2
∇2h00 −

3ȧ
2a

ḣ00 +
1
a2
∂iḣi0 −

1
2a2

[
ḧii −

2ȧ
a

ḣii + 2
(
ȧ2

a2
− ä

a

)
hii

]
. (1.18)

In general, we can put the Einstein field equations in the form

Rµν = 8πG S µν, (1.19)

where

S µν = Tµν −
1
2

gµνgρσTρσ. (1.20)

the perturbation to the energy-momentum tensor and metric produces a perturbation to the source
tensor S µν:

δ S µν = δTµν −
1
2

gµνδT λ
λ −

1
2

hµνT
λ

λ. (1.21)

We are not assuming that the contents of the universe form a perfect fluid, but the rotational and
translational invariance of the unperturbed energy-momentum tensor T µν require that it takes the
perfect fluid form:

T µν = p gµν + (p + ρ) uµuν , (1.22)
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where ρ(t), p(t), and u µ are the unperturbed energy density, pressure, and velocity four-vector, re-
spectively, with u 0 = 1 and u i = 0. Also, we use the unperturbed Einstein equation to write ρ and p
in terms of the Robertson-Walker scale factor and its derivatives

ρ =
3

8πG

(
ȧ2

a2

)
, p = − 1

8πG

(
2ä
a
+

ȧ2

a2

)
. (1.23)

It follows in particular that the unperturbed energy-momentum tensor has the trace

T λ
λ = 3p − ρ = − 3

4πG

(
ä
a
+

ȧ2

a2

)
. (1.24)

Hence,

δ S jk = δTjk −
a2

2
δjkT λ

λ +
3

8πG

(
ä
a
+

ȧ2

a2

)
hjk, (1.25)

δ S j0 = δTj0 +
3

8πG

(
ä
a
+

ȧ2

a2

)
hj0, (1.26)

δ S 00 = δT00 +
1
2
δT λ

λ +
3

8πG

(
ä
a
+

ȧ2

a2

)
h00. (1.27)

The Einstein equations thus take the form

8πG
(
δTjk −

a2

2
δjk δT λ

λ

)
=

1
2
∂j∂kh00 +

(
2ȧ2 + aä

)
δjkh00 +

1
2

aȧ δjkḣ00 +
1
2

ḧjk −
ȧ
2a

(
ḣjk − δjkḣii

)
− 1

2a2

(
∇2hjk − ∂i∂jhik − ∂i∂khij + ∂j∂khii

)
− ȧ

2a
(
∂jhk0 + ∂khj0

)
−

(
ȧ2

a2

)
δjkhii −

ȧ
a
δjk∂ihi0 −

1
2

(
∂jḣk0 + ∂kḣj0

)
−

(
ȧ2

a2
+

3ä
a

)
hjk, (1.28)

8πGδTj0 = −
ȧ
a
∂jh00 −

1
2a2

(
∇2hj0 − ∂j∂ihi0

)
−

(
2ä
a
+

ȧ2

a2

)
hj0

−1
2
∂

∂t

[
1
a2

(
∂jhkk − ∂khkj

)]
, (1.29)

8πG
(
δT00 +

1
2
δT λ

λ

)
= − 1

2a2
∇2h00 −

3ȧ
2a

ḣ00 +
1
a2
∂iḣi0

− 1
2a2

[
ḧii −

2ȧ
a

ḣii + 2
(
ȧ2

a2
− ä

a

)
hii

]
− 3

(
ȧ2

a2
+

ä
a

)
h00. (1.30)

The component of the energy momentum tensor are subject to the conservation condition that
T µ

ν ;µ = 0, which to first order in perturbations gives

∂µδT µ
ν + Γ

µ

µλδT λ
ν − Γ λµνδT µ

λ + δΓ
µ

µλT
λ
ν − δΓλµνT

µ

λ = 0, (1.31)
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in which the perturbations to the energy-momentum tensor δT µ
ν with mixed indices can be calculated

from
δT µ

ν = gµλ
[
δTλν − hλκT κ

ν

]
. (1.32)

Setting ν equal to a spatial coordinate index j gives the equation of momentum conservation

∂0δT 0
j + ∂iδT i

j +
2ȧ
a
δT 0

j − aȧδT j
0 − (ρ + p)

(
1
2
∂ jh00 −

ȧ
a

h j0

)
= 0, (1.33)

while setting ν equal to the time coordinate index 0 gives the equation of energy conservation

∂0δT 0
0 + ∂iδT i

0 +
3ȧ
a
δT 0

j −
ȧ
a
δT i

i −
(
ρ + p
2a2

) (
−2ȧ

a
hii + ḣii

)
= 0. (1.34)

These conversion equations are not independent conditions, but may be derived from the Einstein
field equations. However, it is often convenient to use either or both in place of one or two of the field
equations. Also, in the frequently encountered case where the constituents of the universe are non-
interacting fluids (such as one fluid consisting of cold dark matter and another consisting of ordinary
matter and radiation) these conservation equations are satisfied separately by each fluid, information
that could not be derived from the field equations.

The results obtained so far are repulsively complicated. Fortunately, the spatial isotropy and ho-
mogeneity of the unperturbed metric and energy-momentum tensor allow us to simplify these results
by decomposing the perturbations into scalars, divergenceless vectors, and divergenceless traceless
symmetric tensors, which are not coupled to each other by the field equations or conservation equa-
tions. The perturbation to the metric can always be out in the form

h00 = −E, (1.35)

hi0 = a
[
∂F
∂xi
+Gi

]
, (1.36)

hi j = a2

[
Aδi j +

∂2B
∂xi∂x j

+
∂Ci

∂x j
+
∂C j

∂xi
+ Di j

]
, (1.37)

where the perturbations A, B, Ci, Di j = D ji, E, F, and Gi are functions of x and t, satisfying the
conditions

∂Ci

∂xi
=
∂Gi

∂xi
= 0,

∂Dij

∂xi
= 0, Dii = 0. (1.38)

To carry out a similar decomposition of the energy-momentum tensor, we first note that for a
perfect fluid we would have

Tµν = pgµν + (ρ + p) uµuν, (1.39)

with
gµνuµuν = −1, (1.40)

Recalling that ui = 0 and u0 = −1, we find that the normalization condition Eq. (1.40) gives

δu0 = δu0 =
h00

2
, (1.41)
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while δui is an independent dynamical variable. (Note that δuµ ≡ δ (gµνuν) is not given by gµνδuν.)
Then the first-order perturbation to the energy-momentum tensor for a perfect fluid is

δTij = p hij + a2δijδp, δ Ti0 = phi0 − (ρ + p) δui, δ T00 = −ρh00 + δρ. (1.42)

More generally, we can always put the perturbed energy-momentum tensor in a form like that of the
perturbed metric. In general, we define δρ just as for a perfect fluid, as the difference between δT00

and −ρh00, but δρ is not necessarily given by varying the temperature and chemical potentials in the
formula for ρ that applies in thermal equilibrium. Also, in general we define the velocity perturbation
δui times p + ρ as for a perfect fluid, as the difference between −δTi0 and phi0, and we decompose
δui into the gradient of a scalar velocity potential δu and a divergenceless vector δuV

i . Finally, ew
define a2δp as the coefficient of δij in the difference between δTij and pδij, again without assuming
that δp is given by varying the temperature and chemical potentials in the formula for p that applies
in thermal equilibrium. The other terms in δTij, denoted ∂i∂jπ

S , ∂i π
V
j + ∂j π

V
i , and πT

ij , represent
dissipative corrections to the inertia tensor. That is, we write

δTij = p hij + a2
[
δijδp + ∂i∂jπ

S + ∂iπ
V
j + ∂jπ

V
i + π

T
ij

]
, (1.43)

δTi0 = p hi0 − (ρ + p)
(
∂iδu + δuV

i

)
, (1.44)

δT00 = −ρ h00 + δρ, (1.45)

where πV
i , πT

ij , and δuV
i satisfy conditions analogous to the conditions Eq. (1.38) satisfied by Ci, Dij,

and Gi:
∂iπ

V
i = ∂iδuV

i = 0, ∂iπ
T
ij = 0, πT

ii = 0. (1.46)

To repeat, these formulas can be taken as a definition of the quantities δρ, δp, and δui ≡ ∂iδu +
δuV

i , as well as of the anisotropic inertia terms πS , πV , and πT , which characterize departures from
the perfect fluid form of the energy-momentum tensor. The perturbed mixed components (1.32) of
energy-momentum tensor, which are needed in the conservation laws,

δT i
j = δij δp + ∂i∂jπ

S + ∂iπ
V
j + ∂jπ

V
i + ∂π

T
ij , (1.47)

δT i
0 = a−2 (ρ + p)

(
a∂iF + aGi − ∂iδu − δuV

i

)
(1.48)

δT 0
i = (ρ + p)

(
∂iδu + δuV

i

)
, δ T 0

0 = −δρ, (1.49)

δT λ
λ = 3δp − δρ + ∇2πS . (1.50)

With these decompositions, and again using Eq. (1.23), the Einstein field equations (1.28)–(1.29)
and conservation equations (1.33) and (1.34) fall into three classes of coupled equations:
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Scalar (Compressional) Modes
These are the most complicated, involving the eight scalars E, F, A, B, δρ, δP, πS , and δu. The part
of Eq. (1.28) proportional to δjk gives

−4πGa2
[
δρ − δp − ∇2πS

]
=

1
2

aȧĖ +
(
2ȧ2 + aä

)
E +

1
2
∇2A − 1

2
a2Ä

−3aȧȦ − 1
2

aȧ∇2Ḃ + ȧ∇2F. (1.51)

The part of Eq. (1.28) of the form ∂j∂kS (where S is any scalar) gives

∂j∂k

[
16πGa2πS + E + A − a2B̈ − 3aȧḂ + 2aḞ + 4ȧF

]
= 0. (1.52)

The part of Eq. (1.29) of the form ∂jS (where S is again any scalar) gives

8πGa (ρ + p) ∂jδu = −ȧ∂jE + a∂jȦ. (1.53)

Eq. (1.30) gives

−4πG
(
δρ + 3δp + ∇2πS

)
= − 1

2a2
∇2E − 3ȧ

2a
Ė − 1

a
∇2Ḟ − ȧ

a2
∇2F +

3
2

Ä

+
3ȧ
a

Ȧ − 3ä
a

E − 1
2
∇2B̈ +

ȧ
a
∇2Ḃ. (1.54)

The part of the momentum conservation condition (1.33) that is a derivative of ∂j is

∂j

[
δp + ∇2πS + ∂0

[
(ρ + p)δu

]
+

3ȧ
a

(ρ + p) δu +
1
2

(ρ + p) E
]
= 0, (1.55)

and the energy-conservation condition (1.34) is

δρ̇ +
3ȧ
a

(δρ + δp) + ∇2
[
−a−1 (ρ + p) F + a−2 (ρ + p) δu +

ȧ
a
πS

]
+

1
2

(ρ + p) ∂0

[
3A + ∇2B

]
= 0. (1.56)

In Eqs. (1.55) and (1.56), δρ, δp, and πS are elements of the perturbation to the total energy-
momentum tensor, but the same equations apply to each constituent of the universe that does not
exchange energy and momentum with other constituents.

Vector (Vortical) Modes
These involve the four divergenceless vectors Gi, Ci, δuV

i , and πV
i . The part of Eq. (1.28) of the form

∂kV j (where V j is any vector satisfying ∂ jV j = 0) gives

∂k

[
16πGa2πV

j − a2C̈j − 3aȧĊj + aĠj + 2ȧGj

]
= 0, (1.57)

while the part of Eq. (1.29) of the form Vj (where Vj is again any vector satisfying ∂jVj = 0) gives

8πG (ρ + p) aδuV
j =

1
2
∇2Gj −

a
2
∇2Ċj. (1.58)
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The part of the momentum conservation equation (1.33) that takes the form of a divergenceless vector
is

∇2πV
j + ∂0

[
(ρ + p) δuV

j

]
+

3ȧ
a

(ρ + p) δuV
j = 0, (1.59)

In particular, for a perfect fluid πV
i = 0, and Eq. (1.59) tells us that (ρ + p) δuV

j decays as 1/a3. In
this case, both Eqs. (1.57) and (1.58) imply that the quantity Gj − aĊj decays as 1/a2. Because they
decay, vector modes have not played a large role in cosmology.

Tensor (Rediative) Modes
These involve only the two traceless divergenceless symmetric tensor Dij and πT

ij . There is only one
field equation here: the part of Eq. (1.28) of the form of a divergenceless traceless tensor is the wave
equation for gravitational radiation

− 16πGa2πT
ij = ∇2Dij − a2D̈ij − 3aȧḊij. (1.60)

The above equations for scalar, vector, and tensor perturbations do not form a complete set. This
is in part because we still have the freedom to make changes in the coordinate system, of the same
order as the physical perturbations. In the next section, we will see how to remove this freedom by a
choice of “gauge.”

But even after the gauge has been fixed, the equations for the scalar modes will still not form a
complete set, unless the pressure p and anisotropic inertia πS can be expressed as functions of the
energy density ρ. The pressure in thermal equilibrium can usually be expressed as a function of ρ and
one or more number densities n that satisfy the condition that the current nµ is conserved

(nuµ); µ = 0. (1.61)

This condition tells us that the unperturbed number density satisfied n ∝ a−3, while the perturbation
satisfies

∂

∂t

(
δn
n

)
+

1
a2
∇2δu +

1
2

(
3Ȧ + ∇2Ḃ

)
− 1

a
∇2F = 0. (1.62)

With p given as a function of ρ and n, after gauge fixing the field equations and conservation equations
(1.55), (1.56), and (1.62) form a complete set of equations for the scalar modes. Similarly, even after
gauge fixing, the equations for vector and tensor modes do not form a complete set unless we have
formulas for πV

i and πT
ij , respectively. This is no problem for perfect fluid, for which πV

i = π
T
ij = 0.

In the general case local thermal equilibrium is not maintained, and we must calculate δρ, δp, πS , πV
i

and πT
ij by following changes in the distribution of individual particle positions and momenta, which

are governed by Boltzmann equations.
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2 Gravitational Gauge Transformation

The equations derived in Section 1 have two unsatisfactory features. First, even with the simplifica-
tions introduced by decomposing the equations into scalar, vector, and tensor modes, the equations
for the scalar modes are still fearsomely complicated. Second, among the solutions of these equa-
tions are unphysical scalar and vector modes, corresponding to a mere coordinate transformation of
unperturbed Robertson-Walker metric and energy-momentum tensor. We can eliminate the second
problem and ameliorate the first by fixing the coordinate system, adopting suitable conditions on the
full perturbed metric or energy-momentum tensor. Consider a spacetime coordinate transformation

xµ → x′µ = xµ + ϵµ(x), (2.1)

with ϵµ(x) small in the same sense that hµν, δρ, and other pertubations are small. Under this transfor-
mation, the metric tensor will be transformed to

g′µν(x′) = gλκ(x)
∂xλ

∂x′µ
∂xκ

∂x′ν
. (2.2)

Instead of working with such transformations, which affect the coordinates and unperturbed fields
as well as the perturbations to the fields, it is more convenient to work with so-called gauge trans-
formations, which affect only the field perturbations. For this purpose, after making the coordinate
transformation (2.1), we relabel coordinates by dropping the prime on the coordinate argument, and
we attribute the whole change in gµν(x) to a change in the perturbation hµν(x). The field equations
should thus be invariant under the gauge transformation hµν(x)→ hµν(x) + ∆hµν(x), where

∆hµν(x) ≡ g′µν(x) − gµν(x), (2.3)

with the unperturbed Robertson-Walker metric gµν(x) left unchanged, and corresponding gauge trans-
formations of other perturbations. To first order in ϵ(x) and hµν(x), Eq. (2.3) is

∆hµν(x) = g′µν(x′) −
∂gµν(x)
∂xλ

ϵλ(x) − gµν(x)

= −gλµ(x)
∂ϵλ(x)
∂xν

− gλν(x)
∂ϵλ(x)
∂xµ

−
∂gµν(x)
∂xλ

ϵλ(x), (2.4)

or in more detail

∆hij = −
∂ϵi

∂x j
−
∂ϵj

∂xi
+ 2aȧδijϵ0, (2.5)

∆hi0 = −
∂ϵi

∂t
− ∂ϵ0

∂xi
+ 2

ȧ
a
ϵi, (2.6)

∆h00 = −2
∂ϵ0

∂t
, (2.7)

with all quantities evaluated at the same spacetime coordinate point, and indices now raised and
lowered with the Robertson-Walker matric, so that ϵ0 = −ϵ0 and ϵi = a2ϵ i. The field equation will
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be invariant only if the same gauge transformation is applied to all tensors, and in particular to the
energy-momentum tensor, so that we must transform δTµν(x)→ δTµν(x)+∆ δTµν(x), where∆ δTµν

is given by a formula1 analogous to Eq. (2.4):

∆ δTµν = −T λµ(x)
∂ϵλ(x)
∂xν

− T λν(x)
∂ϵλ(x)
∂xµ

−
∂T µν(x)
∂xλ

ϵλ(x), (2.8)

or more detail

∆ δTij = −p
(
∂ϵi

∂x j
+
∂ϵj

∂xi

)
+
∂

∂t

(
a2 p

)
δijϵ0, (2.9)

∆ δTi0 = −p
∂ϵi

∂t
+ ρ

∂ϵ0

∂xi
+ 2p

ȧ
a
ϵi, (2.10)

∆ δT00 = 2ρ
∂ϵ0

∂t
+ ˙̄ρϵ0. (2.11)

Note that we use δ to signify a perturbation, while ∆ here denotes the change in a perturbation asso-
ciated with a gauge transformation.

In order to write these gauge transformations in terms of the scalar, vector, and tensor components
introduced in Section 1, it is necessary to decompose the spatial part of ϵµ into the gradient of a spatial
scalar plus a divergenceless vector:

ϵi = ∂iϵ
S + ϵV

i , ∂iϵ
V
i = 0. (2.12)

Then the transformations (2.5)–(2.7) and (2.9)–(2.11) give the gauge transformations of the metric
perturbation components defined by Eqs. (1.35)–(1.37):

∆A =
2ȧ
a
ϵ0, ∆B = − 2

a2
ϵS ,

∆Ci = −
1
a2
ϵV

i , ∆Dij = 0, ∆E = 2ϵ̇0, (2.13)

∆F =
1
a

(
−ϵ0 − ϵ̇S +

2ȧ
a
ϵS

)
, ∆Gi =

1
a

(
−ϵ̇V

i +
2ȧ
a
ϵV

i

)
,

and of the perturbations (1.43)–(1.45) to the pressure, energy density, and velocity potential

∆δp = ˙̄pϵ0, ∆δρ = ˙̄ρϵ0, ∆δu = −ϵ0. (2.14)

The other ingredients of the energy-momentum tensor are gauge invariant:

∆πS = ∆πV
i = ∆π

T
ij = ∆δu

V
i = 0. (2.15)

Note in particular that the conditions πS = πV
i = π

T
ij = 0 for a perfect fluid and the condition δuV

i = 0
for potential (i.e. irrotational) flow are gauge invariant.

1The right-hand sides of Eqs. (2.4) and (2.8) are known as the Lie derivatives of the metric and energy-momentum
tensor, respectively.
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For the field equations to be gauge-invariant, similar transformations must of course be made on
any other ingredients in these equations. For instance, any four-scalar s(x) for which s′(x′) = s(x)
under arbitrary four-dimensional coordinate transformations would undergo the change ∆δs(x) ≡
s′(x) − s(x) = s′(x) − s′(x′), which to first order in perturbations is

∆δs(x) = s(x) − s(x′) = −∂s̄(t)
∂xµ

ϵµ(x) = ˙̄s(t)ϵ0. (2.16)

This applies for instance to the number density n or a scalar field φ. For a perfect fluid both p and
ρ are defined as scalars, and the gauge transformations in Eq. (2.14) of δp and δρ are other special
cases of Eq. (2.16). Likewise, for a perfect fluid the gauge transformation in Eq. (2.14) of δu can be
derived from the vector transformation law of uµ. Because the gauge transformation properties of δρ,
δp, δu, etc. do not depend on the conservation laws, Eqs. (2.14) and (2.15) apply to each individual
constituent of the universe in any case in which the energy-momentum tensor is a sum of terms for
different constituents of the universe, even if these individual terms are not separately conserved.

We can eliminate the gauge degrees of freedom either by working only with gauge-invariant quan-
tities, or by choosing a gauge. The tensor quantities πT

ij and Dij appears in Eq. (1.60) are already gauge
invariant, and no gauge-fixing is necessary or possible. For the vector quantities πV

i , δuV
i , Ci and Gi,

we can write Eqs. (1.57)–(1.59) in terms of the gauge invariant quantities πV
i , δuV

i and G̃i ≡ Gi−aĊi,
or we can fix a gauge for these quantities by choosing ϵV

i so that either Ci or Gi vanishes. For the
scalar perturbations it is somewhat more convenient to fix a gauge. There are several frequently con-
sidered possibilities.

Newtonian Gauge
Here we choose ϵS so that B = 0, and then choose ϵ0 so that F = 0. Both choices are unique, so

that after choosing Newtonian gauge, there no remaining freedom to make gauge transformations. It
is conventional to write E and A in this gauge as

E ≡ 2Φ, A ≡ −2Ψ, (2.17)

so that (now considering only scalar perturbations) the perturbed metric has components

g00 = −1 − 2Φ, g0i = 0, gij = a2(t) (1 − 2Ψ) δij (2.18)

The gravitational field equations (1.51)–(1.54) then take the form

−4πGa2
[
δρ − δp − ∇2πS

]
= aȧΦ̇ +

(
4ȧ2 + 2aä

)
Φ − ∇2Ψ + a2Ψ̈ + 6aȧΨ̇, (2.19)

−8πGa2∂i∂j π
S = ∂i∂j [Φ − Ψ] , (2.20)

4πGa (ρ + p) ∂iδu = −ȧ∂iΦ − a∂iΨ̇, (2.21)

4πG
(
δρ + 3δp + ∇2πS

)
=

1
a2
∇2Φ +

3ȧ
a
Φ̇ + 3Ψ̈ +

6ȧ
a
Ψ̇ +

6ä
a
Φ, (2.22)
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and the equations (1.55)-(1.56) of momentum and energy conservation become (aside from modes of
zero wave number)

δp + ∇2πS + ∂0
[
(ρ + p) δu

]
+

3ȧ
a

(ρ + p) δu + (ρ + p)Φ = 0, (2.23)

δρ +
3ȧ
a

(δρ + δp) + ∇2
[
a−2 (ρ + p) δu +

ȧ
a
πS

]
− 3 (ρ + p) Ψ̇ = 0. (2.24)

In particular, Eq. (2.20) shows that Φ and Ψ are not physically independent fields; they differ only
by a term arising from the anisotropic part of the stress tensor, and in particular they are equal for a
perfect fluid, for which πS = 0. The perturbation to the number density of a species of particle whose
total number is conserved will satisfy relation (1.62), which in Newtonian gauge reads

∂

∂t

(
δn
n̄

)
+

1
a2
∇2δu − 3Ψ̇ = 0. (2.25)

Given an equation of state for p as a function of ρ (or, if p depends also on other quantities like
n, then given also field equations for those quantities) and given also a formula for πS as a linear
combination of the other perturbations (such as for instance the formula πS = 0 for a perfect fluid)
we can regard Eqs. (2.21), (2.23), and (2.23) (and, where needed, Eq. (2.25)) as equations of motion
for Ψ, δu, and δρ, respectively, with Φ given in terms of Ψ by Eq. (2.20). The remaining equations
provide a constraint on the solution of this coupled system of equations. By substracting 3/a2 times
Eq. (2.19) from Eq. (2.22) and then using Eqs. (2.20) and (2.21) to eliminate πS and Φ, we find that

a2δρ − 3Ha3 (ρ + p) δu −
( a
4πG

)
∇2Ψ = 0. (2.26)

This is a constraint rather than an equation of motion, because the equations of motion (2.19),
(2.21), and (2.22) imply that the left-hand side of Eq. (2.26) is time-independent, so that Eq. (2.26)
only has to be imposed as an initial condition.

Synchronous Gauge
Here we choose ϵ0 so that E = 0, and then choose ϵS so that again F = 0. Considering only

scalar perturbations, the complete perturbed metric is then

g00 = −1, g0i = 0, gij = a2

[
(1 + A) δij +

∂2B
∂xi∂x j

]
. (2.27)

In this gauge, the Einstein field equations (1.51)–(1.54) take the form

−4πGa2
[
δρ − δp − ∇2πS

]
=

1
2
∇2A − 1

2
a2Ä − 3aȧȦ − 1

2
aȧ∇2Ḃ, (2.28)

−16πGa2πS = A − a2B̈ − 3aȧḂ, (2.29)

8πG a (ρ + p) δu = aȦ, (2.30)

−4πG
(
δρ + 3δp + ∇2πS

)
=

3
2

Ä +
3ȧ
a

Ȧ +
1
2
∇2B̈ +

ȧ
a
∇2Ḃ, (2.31)
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and the equations (2.48) and (2.49) of momentum and energy conservation read

δp + ∇2πS + ∂0
[
(ρ + p) δu

]
+

3ȧ
a

(ρ + p) δu = 0, (2.32)

δρ̇ +
3ȧ
a

(δρ + δp) + ∇
[
a−2 (ρ + p) δu +

ȧ
a
πS

]
+

1
2

(ρ + p) ∂0

[
3A + ∇2B

]
= 0. (2.33)

Note that in this gauge the equation of momentum conservation, which furnished the equation of
motion (the Navier–Stokes equation) for an imperfect fluid, does not depend at all on the pertubed
metric, while the eqution of energy conservation may be written as

δρ̇ +
3ȧ
a

(δρ + δp) + ∇2
[
a−2 (ρ + p) δu +

ȧ
a
πS

]
+ (ρ + p)ψ = 0 (2.34)

where

ψ ≡ 1
2

[
3Ȧ + ∇2Ḃ

]
=
∂

∂t

(
hii

2a2

)
. (2.35)

We need A and B separately to calculate the motion of individual particles, but the effect of gravitation
on a perfect or imperfect fluid is entirely governed by the quantity ψ. Inspection of the field equation
(2.31) shows that it provides a differential equation for just this combination of scalar fields:

− 4πGa2
(
δρ + 3δp + ∇2πS

)
=
∂

∂t

(
a2ψ

)
(2.36)

Also, in synchronous gauge the equation (1.62) for particle conservation takes the form

∂

∂t

(
δn
n̄

)
+ a−2∇2δu + ψ = 0. (2.37)

Given an equation of state for p as a function of ρ (and perhaps n) and a formula expressing πS

as a linear combination of the other scalar perturbations we can use Eqs. (2.32), (2.34), (2.36) (and
perhaps Eq. (2.37)) to find solutions for the three independent perturbations δu, δρ, and ψ, respec-
tively. The left-over equations (2.28)–(2.30) are not needed, for a reason given in Section 1: the full
set of equations (2.28)–(2.33) are not independent, because the equations of energy and momentum
conservation can be derived from the Einstein field equations.

If we need to know A and B separately we can find them from ψ and δρ. By adding 3 times
Eq. (2.28), plus 1/2 the Laplacian of Eq. (2.29), plus a2 times Eq. (2.31), we obtain the simple
relation

∇2A = −8πGa2δρ + 2Ha2ψ, (2.38)

where as usual H ≡ ȧ/a. After A is found in this way, we can find B form A and ψ by solving
Eq. (2.35).

We can see from Eq. (2.13) that E and F are not affected by a gauge transformation with

ϵ0 (x, t) = −τ(x), ϵS (x, t) = a2(t)τ(x)
∫

a−2(t)dt, (2.39)

where τ(x) is an arbitrary function of x, but not of t. But under this transformation A and B do change

∆A = −2ȧτ
a
, ∆B = −2τ

∫
a−2(t)dt. (2.40)
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In particular, the combination (2.35) undergoes the change

∆ψ = −3τ
d
dt

( ȧ
a

)
− a−2∇2τ. (2.41)

Also, the changes in the perturbations to the energy density, pressure, and velocity potential are given
by Eqs. (eq:gaugeall) and (2.39) as

∆δp = − ˙̄pτ, ∆δρ = − ˙̄ρτ, ∆δu = τ, (2.42)

while πS is invariant. The same transformation rules apply for any one of the individual constituents
of the universe. Any scalar perturbation δs such as the number density perturbation δn or a scalar
field perturbation δφ undergoes a change like that of the pressure and density perturbations:

∆δs = − ˙̄sτ. (2.43)

We can check that all of the equations (2.28)–(2.34) and (2.37) are invariant under these residual
gauge transformations. This being the case, for any solution ψ, δp, δu, δn, etc. of these equations
there will be another solution ψ + ∆ψ, δp + ∆δp, δρ + ∆δρ, δu + ∆δu, n + ∆δn, etc. and since the
field equations are linear, this means that ∆ψ, ∆δp, ∆δρ, ∆δu, ∆δn, etc. is also a solution. (For this
solution there is no scalar anisotropic inertia, because πS is gauge invariant.)

Newtonian–Synchronous Gauge Conversion
We will find it convenient to do calculations using Newtonian gauge in some eras, and syn-

chronous gauge in others. To connect results for different eras, we need to be able to convert them
from one gauge to another.

Suppose first that we begin in Newtonian gauge, and make an infinitesimal coordinate transforma-
tion xµ → xµ + ϵµ, with ϵi = ∂iϵ

S so as not to induce vector perturbations. According to Eqs. (2.13)
and (2.17), in order to give E the synchronous gauge value E = 0, we need

ϵ̇0 = −Φ (2.44)

Then according to Eq. (2.13), to keep F = 0 we need

∂

∂t

(
ϵS

a2

)
= − ϵ0

a2
. (2.45)

The A and B components of the spatial metric in synchronous gauge are given by Eqs. (2.13) and
(2.17):

A = −2Ψ + 2Hϵ0, B = − 2
a2
ϵS , (2.46)

where H ≡ ȧ/a. In particular, the field of ψ is

ψ = −3Ψ̇ + 3
∂

∂t
(Hϵ0) +

∇2ϵ0

a2
. (2.47)
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Also, Eq. (2.14) allows us to calculate the synchronous gauge pressure perturbation δps, energy den-
sity perturbation δρs, and velocity potential δus from the corresponding quantities δp, δρ, and δu in
Newtonian gauge:

δps = δp + ϵ ˙̄p, δρs = δρ + ϵ0 ˙̄ρ, δus = δu − ϵ0. (2.48)

Given Φ we can calculate ϵ0 from Eq. (2.44), and then given Ψ we can obtain ψ from Eq. (2.47) and
the synchronous gauge pressure, energy density, and velocity potential perturbations from Eq. (2.48).
The quantity ϵ0 is determined by Eq. (2.44) only up to a time-dependent function of position, so the
values of the synchronous gauge quantities A, B, ψ, p̃, ρ̃, and δũ are only determined up to a residual
gauge transformation (2.40)–(2.42).

Next suppose that we begin in synchronous gauge, with metric fields A and B, and want to convert
to Newtonian gauge. According to Eq. (2.13), to make gij proportional to δij we need to take

ϵS = a2B/2. (2.49)

Then to keep gi0 = 0, Eq. (2.13) tells us that we must take

ϵ0 = −a2Ḃ/2. (2.50)

Using Eq. (2.13) again together with the definitions (2.18), we have then

Φ = ϵ̇0 = −
1
2
∂

∂t

(
a2Ḃ

)
, (2.51)

Ψ = −1
2

(
A +

2ȧ
a
ϵ0

)
= −1

2
A +

aȧ
2

Ḃ. (2.52)

In contrast to the previous case, Eqs. (2.51) and (2.52) give Φ and Ψ uniquely. Not only that – it is
easy to see that the results forΦ andΨ are unaffected if the A and B with which we start are subjected
to the residual gauge transformation (2.40).

Other Gauges
In choosing a gauge, it is not necessary to impose conditions only on the scalar fields appearing

in the metric tensor. Instead, some of the gauge conditions can impose constraints on the scalars
appearing in the energy-momentum tensor. For instance, in co-moving gauge we choose ϵ0 so that
δu = 0 (which for scalar perturbations makes the velocity perturbation δui vanish). Where the only
“matter” is a single scalar field, as in popular theories of inflation, this mean that the time coordinate
is defined so that at any given time the scalar field equals its unperturbed value, with all perturbations
relegated to components of the metric. In the constant density gauge we choose ϵ0 so that δρ = 0.
In either case, after fixing ϵ0 we can make F vanish with a suitable choice of ϵS , so that the scalar
perturbations still have gi0 = 0. Note that although this procedure fixes ϵ0, it only fixes ϵS up to terms
of the form a2(t)τ(x), so these gauges share the drawback of synchronous gauge, of leaving a residual
gauge symmetry.
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3 Random Cosmic Fields and their Statistical Description

In this section we succinctly recall current ideas about the physical origin of stochasticity in cosmic
fields in different cosmological scenarios. We then present the statistical tools that are commonly used
to describe random cosmic fields such as power spectra, probability distribution functions, moments
and cumulants, and give some mathematical properties of interest.

The Need for a Statistical Approach
The current explanation of the large-scale structure of the universe is that the present distribution

of matter on cosmological scales results from the growth of primordial, small, seed fluctuations on
an otherwise homogeneous universe amplified by gravitational instability. Tests of cosmological the-
ories which characterize these primordial seeds are not deterministic in nature but rather statistical,
for the following reasons. First, we do not have direct observational access to primordial fluctua-
tions (which would provide definite initial conditions for the deterministic evolution equations). In
addition, the time-scale for cosmological evolution is so much longer than that over which we can
make observations, that is not possible to follow the evolution of single systems. In other words, what
we observe through our the past light cone is different objects at different times of their evolution,
therefore testing the evolution of structure must be done statistically.

The observable universe is thus modeled as a stochastic realization of a statistical ensemble of
possibilities. The goal is to make statistical predictions, which in turn depend on the statistical prop-
erties of the primordial perturbations leading to the formation of large-scale structures. Among the
two classes of models that have emerged to explain the large-scale structure of the universe, the phys-
ical origin of stochasticity can be quite different and thus give rise to very different predictions.

Correlation Functions and Power Spectra
From now on, we consider a cosmic scalar field whose statistical properties we want to describe.

This field can either be the cosmic density field, δ(x), the cosmic gravitational potential, the velocity
divergence field, or any other field of interest.

A random field is called statistically homogeneous2 if all the joint multipoint probability distribu-
tion functions p(δ1, δ2, . . . ) or its moments, ensemble averages of local density products, remain the
same under translation of the coordinates x1, x2, . . . in space(here δi ≡ δ(xi)). Thus the probabilities
depend only on the relative positions. A stochastic field is called statistically isotropic if p(δ1, δ2, . . . )
is invariant under spatial rotations. We will assume that cosmic fields are statistically homogeneous
and isotropic, as predicted by most cosmological theories. The validity of this assumption can and
should be tested against the observational data.

The two-point correlation function is defined as the joint ensemble average of the density at two
different locations,

ξ(r) =
⟨
δ(x)δ(x + r)

⟩
, (3.1)

which depends only on the norm of r due to statistical homogeneity and isotropy. The density contrast

2This is in contrast with a homogeneous field, which takes the same value everywhere in space.
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δ(x) is usually written in terms of its Fourier components,

δ(x) =
∫

d3k
(2π)3

δ(k) exp(ik · x). (3.2)

The quantities δ(k) are then complex random variables. As δ(x) is real, it follows that

δ(k) = δ∗(−k). (3.3)

The density field is therefore determined entirely by the statistical properties of the random variable
δ(k). We can compute the correlators in Fourier space,

⟨
δ(k)δ(k′)

⟩
=

∫
d3x d3r

⟨
δ(x)δ(x + r)

⟩
exp[−i(k + k′) · x − ik′ · r] (3.4)

which gives,

⟨
δ(k)δ(k′)

⟩
=

∫
d3x d3r ξ(r) exp[−i(k + k′) · x − ik′ · r]

= (2π)3δD(k + k′)
∫

d3r ξ(r) exp(−ik′ · r)

≡ (2π)3δD(k + k′) P(k), (3.5)

where P(k) is by definition the density power spectrum. The inverse relation between two-point
correlation function and power spectrum thus reads

ξ(r) =
∫

d3k
(2π)3

P(k) exp(ik · r). (3.6)

There are basically two conventions in the literature regarding the definition of the power spectrum,
which differ by a factor of (2π)3. In this lecture we use the convention

f (x) =
∫

d3k
(2π)3

f̃ (k) exp(ik · x). (3.7)

and

f̃ (k) =
∫

d3x f (x) exp(−ik · x). (3.8)

Another popular choice is to reverse the role of (2π)3 factors in the Fourier transforms, i.e. δ(k) ≡∫
d3r/(2π)3 exp(−ik · r)δ(r), and then modify Eq. (3.5) to read

⟨
δ(k)δ(k′)

⟩ ≡ δD(k + k′) P(k),
which leads to 4πk3P(k) being the contribution per logarithmic wavenumber to the variance, rather
than k3P(k)/(2π2) as in our case.
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The Wick Theorem for Gaussian Fields
The power spectrum is a well defined quantity for almost all homogeneous random fields. This

concept becomes however extremely fruitful when one considers a Gaussian field. It means that
any joint distribution of local densities is Gaussian distributed. Any ensemble average of product of
variables can then be obtained by product of ensemble averages of pairs. We write explicitly this
property for the Fourier modes as it will be used extensively in this work,⟨

δ(k1) . . . δ(k2p+1)
⟩
= 0 (3.9)⟨

δ(k1) . . . δ(k2p)
⟩
=

∑
all pair associations

∏
p pairs (i,j)

⟨
δ(ki)δ(k j)

⟩
(3.10)

This is the Wick theorem, a fundamental theorem for classic and quantum field theories.
The statistical properties of the random variables δ(k) are then entirely determined by the shape

and normalization of P(k). A specific cosmological model will eventually be determined e.g. by the
power spectrum in the linear regime, by Ωm and ΩΛ only as long as one is only interested in the dark
matter behavior.

As mentioned in the previous section, in the case of an inflationary scenario the initial energy
fluctuations are expected to be distributed as a Gaussian random field. This is a consequence of the
commutation rules given by [

ak, a†−k′
]
= (2π)3δD(k + k′), (3.11)

for the creation and annihilation operators for a free quantum field. They imply that[(
ak + a†−k

)
,
(
ak′ + a†−k′

)]
= (2π)3δD(k + k′). (3.12)

As a consequence of this, the relations in Eqs. (3.9)-(3.10) are verified for φk for all modes that exit
the Hubble radius, which long afterwards come back in as classical stochastic perturbations. These
properties obviously apply also to any quantities linearly related to φk.

Higher-Order Correlators: Diagrammatics
In general it is possible to define higher-order correlation functions. They are defined as the

connected part (denoted with subscript c) of the joint ensemble average of the density in an arbitrarily
number of locations. They can be formally written,

ξN(x1, . . . , xN) = ⟨δ(x1), . . . , δ(xN)⟩c
≡ ⟨δ(x1), . . . , δ(xN)⟩ −

∑
S∈P({x1,...,xn})

∏
si∈S

ξ#si(xsi(1), . . . , xsi(#si)) (3.13)

where the sum is made over the proper partitions (any partition except the set itself) of {x1, . . . , xN}
and si is thus a subset of {x1, . . . , xN} contained in partition S. When the average of δ(x) is defined
as zero, only partitions that contain no singlets contribute.

The decomposition in connected and non-connected parts can be easily visualized. It means that
any ensemble average can be decomposed in a product of connected parts. They are defined for
instance in Figure. 1. The tree-point moment is “written” in Figure. 2 and the four-point moment in
Figure. 4.
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c =δ1

=cδ1 δ δ2 3
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=δ1 δ δ δ c2 3 4

=cδ1 δ

Figure 1: Representation of the connected part of the moments.

+=δ1 δ δ2 3 + ++

Figure 2: Writing of the three-point moment in terms of connected parts.

In case of a Gaussian field all connected correlation functions are zero except ξ2. This is a conse-
quence of Wick’s theorem. As a result the only non-zero connected part is the two-point correlation
function. An important consequence is that the statistical properties of any field, not necessarily lin-
ear, built from a Gaussian field δ can be written in terms of combinations of two-point functions of δ.
Note that in a diagrammatic representation the connected moments of any of such field is represented
by a connected graph. This is illustrated in Figure. 3 for the field δ = ϕ2: the connected part of the
2-point function of this field is obtained by all the diagrams that explicitly join the two points. The
other ones contribute to the moments, but not to its connected part.

= =1 2 + 2
c1 2 = 2δ δ δ δ δ

Figure 3: Disconnected and connected part of the two-point function of the field δ assuming it is
given by δ = ϕ2 with ϕ Gaussian.

The connected part has the important property that it vanishes when one or more points are sep-
arated by infinite separation. In addition, it provides a useful way of characterizing the statistical
properties, since unlike unconnected correlation functions, each connected correlation provides inde-
pendent information.

These definitions can be extended to Fourier space. Because of homogeneity of space
⟨δ(k1) . . . δ(kN)⟩c is always proportional to δD(k1 + · · · + kN). Then we can define PN(k1, . . . , kN)
with

⟨δ(k1) . . . δ(kN)⟩c = δD(k1 + · · · + kN) PN(k1, . . . , kN). (3.14)

One particular case that will be discussed in the following is for n = 3, the bispectrum, which is
usually denoted by B(k1,k2,k3).
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Figure 4: Writing of the three-point moment in terms of connected parts.

Probabilities and Correlation Functions
Correlation functions are directly related to the multi-point probability function, in fact they can

be defined from them. Here we illustrate this for the case of the density field, as these results are
frequently used in the literature. The physical interpretation of the two-point correlation function is
that it measures the excess over random probability that two particles at volume elements dV1 and
dV2 are separated by distance x12 ≡ |x1 − x2|,

dP12 = n2[1 + ξ(x12)]dV1dV2, (3.15)

where n is the mean density. If there is no clustering (random distribution), ξ = 0 and the probability
of having a pair of particles is just given by the mean density squared, independently of distance.
Since the probability of having a particle in dV1 is ndV1, the conditional probability that there is a
particle at dV2 given that there is one at dV1 is

dP(2|1) = n[1 + ξ(x12)]dV2. (3.16)

The nature of clustering is clear from this expression; if objects are clustered (ξ(x12) > 0), then the
conditional probability is enhanced, whereas if objects are anti-correlated (ξ(x12) < 0) the conditional
probability is suppressed over the random distribution case, as expected. Similarly to Eq. (3.15), for
the three-point case the probability of having three objects is given by

dP123 = n3[1 + ξ(x12) + ξ(x23) + ξ(x31) + ξ3(x12, x23, x31)]dV1dV2dV3, (3.17)

where ξ3 denotes the three-point (connected) correlation function. If the density field were Gaussian,
ξ3 = 0, and all probabilities are determined by ξ(r) alone. Analogous results hold for higher-order
correlations.
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Moments, Cumulants and their Generating Functions
One particular case for Eq. (3.13) is when all points are at the same location. Because of statistical

homogeneity ξp(x, . . . , x) is independent on the position x and it reduces to the cumulants of the
one-point density probability distribution functions, ⟨δp⟩c. The relation (3.13) tells us also how the
cumulants are related to the moments ⟨δp⟩. For convenience we write here the first few terms,

⟨δ⟩c = ⟨δ⟩
⟨δ2⟩c = σ2 = ⟨δ2⟩ − ⟨δ⟩2c
⟨δ3⟩c = ⟨δ3⟩ − 3⟨δ2⟩c⟨δ⟩c − ⟨δ⟩3c (3.18)

⟨δ4⟩c = ⟨δ4⟩ − 4⟨δ3⟩c⟨δ⟩c − 3⟨δ2⟩2c − 6⟨δ2⟩c⟨δ⟩2c − ⟨δ⟩4c
⟨δ5⟩c = ⟨δ5⟩ − 5⟨δ4⟩c⟨δ⟩c − 10⟨δ3⟩c⟨δ2⟩c − 10⟨δ3⟩c⟨δ⟩2c − 15⟨δ2⟩2c⟨δ⟩c

−10⟨δ2⟩c⟨δ⟩3c − ⟨δ⟩5c

In most cases ⟨δ⟩ = 0 and the above equations simplify considerably. In the following we usually
denote σ2 the local second order cumulant. The Wick theorem then implies that in case of a Gaussian
field σ2 is the only non-vanishing cumulant.

It is important to note that the local PDF is essentially characterized by its cumulants which
constitute a set of independent quantities. This is important since in most of applications that follow
the higher-order cumulants are small compared to their associated moments. Finally, let’s note that a
useful mathematical property of cumulants is that ⟨(bδ)n⟩c = bn⟨δn⟩c, and ⟨(b + δ)n⟩c = ⟨δn⟩c where
b is an ordinary number.

The density distribution is usually smoothed with a filter WR of a given size, R, commonly a
top-hat or a Gaussian window. Indeed, this is required by the discrete nature of galaxy catalogs
and N-body experiments used to simulate them. Moreover, we shall see later that the scale-free
nature of gravitational clustering implies some remarkable properties about the scaling behavior of the
smoothed density distribution. The quantities of interest are then the moments ⟨δp

R⟩ and the cumulants
⟨δp

R⟩c of the smoothed density field

δR(x) =
∫

WR(x′ − x)δ(x′)d3x′. (3.19)

Note that for the top hat window,

⟨δp
R⟩c =

∫
vR

ξp(x1, . . . , xp)
dDx1 . . . dDxp

vp
R

(3.20)

(whereD = 2 or 3 is the dimension of the field) is nothing but the average of the N-point correlation
function over the corresponding cell of volume vR.

20



Tah Poe School 4 – Pre-school
5 – 6 August 2017

Dr. Teeraparb Chantavat
The Institute for Fundamental Study

Power Spectrum Evolution in Linear Perturbation Theory
The simplest (trivial) application of the gravitational perturbation theory is the leading order con-

tribution to the evolution of the power spectrum. Since we are dealing with the two-point function
in Fourier space (N = 2), only linear theory is required, that is, the connected part is just given by a
single line joining the two points.

In this lecture we are concerned about time evolution of the cosmic fields during the matter dom-
ination epoch. In this case, as we discussed previously, diffusion effects are negligible and the evolu-
tion can be cast in terms of perfect fluid equations that describe conservation of mass and momentum.
In this case, the evolution of the density field is given by a simple time-dependent scaling of the
“linear” power spectrum

P(k, τ) = [D(+)
1 (τ)]2 PL(k) (3.21)

where D(+)
1 (τ) is the growing part of the linear growth factor. One must note, however, that the “lin-

ear” power spectrum specified by PL(k)3 derives from the linear evolution of density fluctuations
through the radiation domination era and the resulting decoupling of matter from radiation. This evo-
lution must be followed by using general relativistic Boltzmann numerical codes, although analytic
techniques can be used to understand quantitatively the results. The end result is that

PL(k) ∝ kns T 2(k) (3.22)

where ns is the primordial spectral index (ns = 1 denotes the canonical scale-invariant spectrum4),
T (k) is the transfer function that describes the evolution of the density field perturbations through
decoupling (T (0) ≡ 1). It depends on cosmological parameters in a complicated way, although in
simple cases (where the baryonic content is negligible) it can be approximated by a fitting function
that depends on the shape parameter Γ ≡ Ωmh. For the adiabatic cold dark matter (CDM) scenario,
T 2(k) → ln2(k)/k4 as k → ∞, due to the suppression of fluctuations growth during the radiation
dominated era.

3We denote the linear power spectrum interchangeably by PL(k) or by P(0)(k).
4This corresponds to fluctuations in the gravitational potential at the Hubble radius scale that have the same amplitude

for all modes, i.e. the gravitational potential has a power spectrum Pφ ∼ k−3, as predicted by inflationary models.
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Exercise

1. Prove Eq. (1.4). Why does a minus sign appear?

2. Show that for a Gaussian random field, δ, and an integer n ≥ 1,

⟨δ2n⟩ ≡

∫ ∞
−∞ dδ δ2n exp

(
− 1

2aδ2
)

∫ ∞
−∞ dδ exp

(
−1

2aδ2
)

=
1
an

(2n − 1)(2n − 3) . . . 5 · 3 · 1

= (2n − 1)(2n − 3) . . . 5 · 3 · 1 ⟨δ2⟩n,

and

⟨δ2n−1⟩ ≡

∫ ∞
−∞ dδ δ2n−1 exp

(
−1

2aδ2
)

∫ ∞
−∞ dδ exp

(
− 1

2aδ2
) = 0.

Hence, justify the validity of the Wick theorem.

3. Write down the diagrammatic connecting parts for 5-point connected correlation functions.
Then verify with the last equation in (3.18).

4. The top-hat window function in 3-dimensional space is given by

f (r) =


3

4πR3
, if r ≤ R,

0, otherwise .

Show that the Fourier transform of the top-hat window function is given by

W(kR) = 3 j1(kR) = 3
sin(kR) − (kR) cos(kR)

(kR)3
.

jν(kR) is the spherical Bessel function of the first kind.
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