Signatures of a sampling quantum advantage in driven quantum many-body systems

#ResearchHighlight

🛎 Signatures of a sampling quantum advantage in driven quantum many-body systems

📌 Authors: Jirawat Tangpanitanon 1,2,3,12,*, Supanut Thanasilp 1,4,5,12,*, Marc-Antoine Lemonde 1,6, Ninnat Dangniam 5,7,8,9, and Dimitris G Angelakis 1,10,11,*

1: Centre for Quantum Technologies, National University of Singapore, Singapore
2: Quantum Technology Foundation (Thailand), Bangkok, Thailand
3: Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, Bangkok, Thailand
4: Institute of Physics, Ecole Polytechnique FÃĐdÃĐrale de Lausanne (EPFL), Switzerland
5: Chula Intelligent and Complex Systems, Department of Physics, Faculty of Science, Chulalongkorn University,
Thailand
6: Nord Quantique, P1-ACET 3000 Blvd UniversitÃĐ, Sherbrooke, Canada
7: Department of Physics and Center for Field Theory and Particle Physics, Fudan University, China
8: State Key Laboratory of Surface Physics, Fudan University, China
9: The Institute for Fundamental Study (IF), Naresuan University, Thailand
10: School of Electrical and Computer Engineering, Technical University of Crete, Greece
11: AngelQ Quantum Computing, Singapore
12: The first two authors contributed equally.
∗Authors to whom any correspondence should be addressed.

📌 āļ„āļ§āļēāļĄāļŠāļģāļ„āļąāļāđāļĨāļ°āļ—āļĩāđˆāļĄāļē

āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļˆāļģāļĨāļ­āļ‡āļ„āļ§āļ­āļ™āļ•āļąāļĄāđ€āļŠāļīāļ‡āļ­āļ™āļēāļĨāđ‡āļ­āļāļ„āļ·āļ­āđāļžāļĨāļ•āļŸāļ­āļĢāđŒāļĄāļ—āļēāļ‡āļ„āļ§āļ­āļ™āļ•āļąāļĄāļ—āļĩāđˆāđ€āļĢāļēāļŠāļēāļĄāļēāļĢāļ–āļ„āļ§āļšāļ„āļļāļĄāđāļĨāļ°āļ™āļģāđ„āļ›āđƒāļŠāđ‰āđƒāļ™āļāļēāļĢāļˆāļģāļĨāļ­āļ‡āļžāļĨāļ§āļąāļ•āļĢāļ‚āļ­āļ‡āļĢāļ°āļšāļšāļ„āļ§āļ­āļ™āļ•āļąāļĄāļŦāļĨāļēāļĒāļ§āļąāļ•āļ–āļļāđ„āļ”āđ‰ āđāļ•āđˆāđƒāļ™āļ‚āļ“āļ°āļ—āļĩāđˆāđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļˆāļģāļĨāļ­āļ‡āļ„āļ§āļ­āļ™āļ•āļąāļĄāđ€āļŠāļīāļ‡āļ­āļ™āļēāļĨāđ‡āļ­āļāđ„āļ”āđ‰āļŠāđˆāļ§āļĒāđƒāļŦāđ‰āļ„āļģāļ•āļ­āļšāļāļąāļšāļ„āļģāļ–āļēāļĄāļ—āļĩāđˆāļŠāļģāļ„āļąāļāļŦāļĨāļēāļĒāļ„āļģāļ–āļēāļĄāđƒāļ™āļŸāļīāļŠāļīāļāļŠāđŒāļ‚āļ­āļ‡āļĢāļ°āļšāļšāļ„āļ§āļ­āļ™āļ•āļąāļĄāļŦāļĨāļēāļĒāļ§āļąāļ•āļ–āļļāļ—āļĩāđˆāđ€āļĢāļēāđ„āļĄāđˆāļŠāļēāļĄāļēāļĢāļ–āļŦāļēāđ„āļ”āđ‰āļˆāļēāļāđ€āļ—āļ„āļ™āļīāļ„āđ€āļŠāļīāļ‡āļ•āļąāļ§āđ€āļĨāļ‚ (numerics) āļ—āļĩāđˆāļĄāļĩāļ­āļĒāļđāđˆ āļ‚āđ‰āļ­āļžāļīāļŠāļđāļˆāļ™āđŒāļ—āļĩāđˆāļĢāļąāļ”āļāļļāļĄāļ‚āļ­āļ‡āļ­āļļāļ•āļĄāļ āļēāļ„āđ€āļŠāļīāļ‡āļ„āļ§āļ­āļ™āļ•āļąāļĄ (quantum advantage) āļŠāļģāļŦāļĢāļąāļšāļĢāļ°āļšāļšāļ­āļ™āļēāļĨāđ‡āļ­āļāļĒāļąāļ‡āļˆāļģāļāļąāļ”āļ­āļĒāļđāđˆāļāļąāļšāļĢāļ°āļšāļšāļ—āļĩāđˆāļ–āļđāļāļ­āļ­āļāđāļšāļšāļĄāļēāļ­āļĒāđˆāļēāļ‡āđ€āļ‰āļžāļēāļ°āđ€āļˆāļēāļ°āļˆāļ‡āđ€āļ—āđˆāļēāļ™āļąāđ‰āļ™

āļœāļđāđ‰āļ§āļīāļˆāļąāļĒāđ„āļ”āđ‰āđƒāļŦāđ‰āļŦāļĨāļąāļāļāļēāļ™āļ—āļēāļ‡āļ—āļĪāļĐāļŽāļĩāļ§āđˆāļēāļ„āļ­āļĄāļžāļīāļ§āđ€āļ•āļ­āļĢāđŒāđāļšāļšāļ„āļĨāļēāļŠāļŠāļīāļāđ„āļĄāđˆāļŠāļēāļĄāļēāļĢāļ–āļˆāļģāļĨāļ­āļ‡āļāļēāļĢāļŠāļļāđˆāļĄāļ•āļąāļ§āļ­āļĒāđˆāļēāļ‡āļšāļīāļ•āļŠāļ•āļĢāļīāļ‡āļˆāļēāļāļžāļĨāļ§āļąāļ•āļĢāđāļšāļšāļ„āļēāļšāļ‚āļ­āļ‡āļ•āļąāļ§āļāļĢāļ°āļ—āļģāļāļēāļĢāļ—āļĩāđˆāļŠāļļāđˆāļĄāļĄāļēāļˆāļēāļāđ€āļ‹āļ­āļĢāđŒāļ„āļīāļ§āļĨāļēāļ­āļ­āđ‚āļ˜āļāļ­āļ™āļ­āļĨāļ­āļ­āļ‡āļ‹āļ­āļ‡āļ„āđŒāđ€āļšāļīāļĨ (COE) āđ„āļ”āđ‰ āļ•āļēāļĄāļŠāļĄāļĄāļ•āļīāļāļēāļ™āļāļēāļĢāđ€āļ‚āđ‰āļēāļŠāļđāđˆāļŠāļĄāļ”āļļāļĨāļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āļ‚āļ­āļ‡āļŠāļ–āļēāļ™āļ°āđ„āļ­āđ€āļāļ™ (eigenstate thermalization hypothesis – ETH) āđāļĨāđ‰āļ§ COE āđ€āļ›āđ‡āļ™āļ­āļ­āļ‡āļ‹āļ­āļ‡āļ„āđŒāđ€āļšāļīāļĨāļ‚āļ­āļ‡āđ€āļĄāļ—āļĢāļīāļāļ‹āđŒāļŠāļļāđˆāļĄāļ—āļĩāđˆāļ­āļ˜āļīāļšāļēāļĒāļŠāļĄāļšāļąāļ•āļīāļ—āļēāļ‡āļŠāļ–āļīāļ•āļīāļ‚āļ­āļ‡āļ„āļĨāļēāļŠāđƒāļŦāļāđˆāļ‚āļ­āļ‡āļĢāļ°āļšāļšāļ„āļ§āļ­āļ™āļ•āļąāļĄāđ€āļŠāļīāļ‡āļ­āļ™āļēāļĨāđ‡āļ­āļāļ—āļĩāđˆāļ–āļđāļāļ‚āļąāļšāđ€āļ„āļĨāļ·āđˆāļ­āļ™ (driven) āđƒāļ™āļŠāļĄāļ”āļļāļĨāļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™ āļœāļđāđ‰āļ§āļīāļˆāļąāļĒāđ„āļ”āđ‰āļŠāļ™āļąāļšāļŠāļ™āļļāļ™ ETH āđ‚āļ”āļĒāļāļēāļĢāļĻāļķāļāļĐāļēāļĢāļ°āļšāļšāļ­āļĩāļ‹āļīāđˆāļ‡āđāļĨāļ°āļĢāļ°āļšāļšāđ‚āļšāļŠ-āļŪāļąāļšāļšāļēāļĢāđŒāļ”āđƒāļ™āļŦāļ™āļķāđˆāļ‡āļĄāļīāļ•āļīāļ—āļĩāđˆāļ–āļđāļāļ‚āļąāļšāđ€āļ„āļĨāļ·āđˆāļ­āļ™āđāļšāļšāļ„āļēāļš āļ‹āļķāđˆāļ‡āļœāļĨāđ€āļŠāļīāļ‡āļ•āļąāļ§āđ€āļĨāļ‚āļ—āļĩāđˆāđ„āļ”āđ‰āļŠāļĩāđ‰āļ§āđˆāļēāļĢāļ°āļšāļšāđ€āļŦāļĨāđˆāļēāļ™āļĩāđ‰āļ­āļēāļˆāđ€āļ›āđ‡āļ™āļ—āļēāļ‡āđ€āļĨāļ·āļ­āļāđƒāļ™āļāļēāļĢāđāļŠāļ”āļ‡āļ­āļļāļ•āļĄāļ āļēāļ„āļ„āļ§āļ­āļ™āļ•āļąāļĄāļ—āļĩāđˆāļ—āļģāđ„āļ”āđ‰āļˆāļĢāļīāļ‡āđƒāļ™āļ—āļēāļ‡āļ›āļāļīāļšāļąāļ•āļī

āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āđƒāļŦāđ‰āļ„āļģāļŠāļĩāđ‰āđāļˆāļ‡āđ€āļāļĩāđˆāļĒāļ§āļāļąāļšāļ„āļ§āļēāļĄāļ‹āļąāļšāļ‹āđ‰āļ­āļ™āļ—āļēāļ‡āļāļēāļĢāļ„āļģāļ™āļ§āļ“āđ„āļĄāđˆāđ€āļ‰āļžāļēāļ°āļāļąāļšāļĢāļ°āļšāļšāļ—āļĩāđˆāđ€āļˆāļēāļ°āļˆāļ‡āđāļ•āđˆāļāļąāļšāļ—āļąāđ‰āļ‡āļ„āļĨāļēāļŠāļ‚āļ­āļ‡āļĢāļ°āļšāļšāļ„āļ§āļ­āļ™āļ•āļąāļĄāđƒāļ™āļŠāļ–āļēāļ™āļ°āļ‚āļ­āļ‡āļŠāļŠāļēāļĢāđ€āļ”āļĩāļĒāļ§āļāļąāļ™ (āđƒāļ™āļ—āļĩāđˆāļ™āļĩāđ‰āļ„āļ·āļ­āļŠāļ–āļēāļ™āļ°āļ‚āļ­āļ‡āļŠāļŠāļēāļĢāđƒāļ™āļŠāļĄāļ”āļļāļĨāļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™) āļœāļĨāļāļēāļĢāļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āđ€āļ›āđ‡āļ™āļ—āļĩāđˆāļ™āđˆāļēāļŠāļ™āđƒāļˆāđƒāļ™āļ§āļ‡āļāļēāļĢāļ—āļ”āļĨāļ­āļ‡āđ€āļ™āļ·āđˆāļ­āļ‡āļˆāļēāļāļĢāļ°āļšāļšāļ—āļĩāđˆāļ–āļđāļāļ‚āļąāļšāđ€āļ„āļĨāļ·āđˆāļ­āļ™āđāļšāļšāļ„āļēāļšāđ„āļ”āđ‰āļ–āļđāļāļŠāļĢāđ‰āļēāļ‡āļ‚āļķāđ‰āļ™āļˆāļĢāļīāļ‡āļ”āđ‰āļ§āļĒāļŪāļēāļĢāđŒāļ”āđāļ§āļĢāđŒāļ„āļ§āļ­āļ™āļ•āļąāļĄāļ—āļĩāđˆāļĄāļĩāļ­āļĒāļđāđˆāđƒāļ™āļ›āļąāļˆāļˆāļļāļšāļąāļ™āđāļĨāđ‰āļ§ āđ‚āļ”āļĒāđ€āļĄāļ·āđˆāļ­āđ€āļĢāđ‡āļ§āđ† āļ™āļĩāđ‰ āļāļēāļĢāļŠāļļāđˆāļĄāļ„āđˆāļēāļšāļīāļ•āļŠāļ•āļĢāļīāļ‡āļˆāļēāļāļĢāļ°āļšāļšāđ‚āļšāļŠ-āļŪāļąāļšāļšāļēāļĢāđŒāļ”āļ—āļĩāđˆāļ–āļđāļāļ‚āļąāļšāđ€āļ„āļĨāļ·āđˆāļ­āļ™āđƒāļ™āļŠāļĄāļ”āļļāļĨāļ„āļ§āļēāļĄāļĢāđ‰āļ­āļ™āđ„āļ”āđ‰āļ–āļđāļāļ—āļ”āļĨāļ­āļ‡āļšāļ™āđāļžāļĨāļ•āļŸāļ­āļĢāđŒāļĄāļ­āļ°āļ•āļ­āļĄāļ—āļĩāđˆāđ€āļĒāđ‡āļ™āļˆāļąāļ” (ultra-cold) āļ—āļĩāđˆāļ„āļ§āļšāļ„āļļāļĄāđ„āļ”āđ‰āļ–āļķāļ‡ 32 āļ•āļģāđāļŦāļ™āđˆāļ‡āđāļĨāļ° 20 āļ­āļ°āļ•āļ­āļĄ

📌 āļœāļĨāļŠāļąāļĄāļĪāļ—āļ˜āļīāđŒāļŠāļģāļ„āļąāļ

– āļœāļđāđ‰āļ§āļīāļˆāļąāļĒāđƒāļŦāđ‰āļŦāļĨāļąāļāļāļēāļ™āđ€āļŠāļīāļ‡āļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ‚āļ­āļ‡āļ„āļ§āļēāļĄāļĒāļēāļāđƒāļ™āļāļēāļĢāļˆāļģāļĨāļ­āļ‡āļāļēāļĢāļŠāļļāđˆāļĄāļ•āļąāļ§āļ­āļĒāđˆāļēāļ‡āļˆāļēāļāļžāļĨāļ§āļąāļ•āļĢāđāļšāļš COE
– āļœāļđāđ‰āļ§āļīāļˆāļąāļĒāđƒāļŦāđ‰āļœāļĨāļĨāļąāļžāļ˜āđŒāđ€āļŠāļīāļ‡āļ•āļąāļ§āđ€āļĨāļ‚āļ‹āļķāđˆāļ‡āđāļŠāļ”āļ‡āļ§āđˆāļēāļĢāļ°āļšāļšāļ­āļĩāļ‹āļīāđˆāļ‡āđāļĨāļ°āđ‚āļšāļŠ-āļŪāļąāļšāļšāļēāļĢāđŒāļ”āļ—āļĩāđˆāļ–āļđāļāļ‚āļąāļšāđ€āļ„āļĨāļ·āđˆāļ­āļ™āđƒāļ™āļĢāļ°āļĒāļ°āļ‚āļ­āļ‡āļĄāļĩāļžāļēāļĢāļēāļĄāļĩāđ€āļ•āļ­āļĢāđŒāļ—āļĩāđˆāļ—āļģāđ„āļ”āđ‰āļˆāļĢāļīāļ‡āđƒāļ™āļāļēāļĢāļ—āļ”āļĨāļ­āļ‡āļŠāļēāļĄāļēāļĢāļ–āđƒāļŦāđ‰āļœāļĨāđ€āļ‚āđ‰āļēāđƒāļāļĨāđ‰āļŠāļ–āļīāļ•āļīāđāļšāļš COE āđāļĨāļ°āļāļēāļĢāđāļˆāļāđāļˆāļ‡āđāļšāļšāļžāļ­āļĢāđŒāđ€āļ•āļ­āļĢāđŒ-āđ‚āļ˜āļĄāļąāļŠ (Porter-Thomas) āđ„āļ”āđ‰āļ­āļĒāđˆāļēāļ‡āļĢāļ§āļ”āđ€āļĢāđ‡āļ§

📌 Motivation and background

Analog quantum simulators are controllable quantum platforms built to implement complex quantum many-body models, and they have been used to implement complex quantum dynamics that cannot be reproduced with existing classical numerics. While analog quantum simulators have shed light on important questions in quantum many-body physics, rigorous proof of a quantum advantage involving complexity theory in those analog systems is limited to specific models.

We have provided formal evidence that sampling bit-strings from a periodic evolution of a unitary drawn from the circular orthogonal ensemble (COE) cannot be efficiently simulated with classical computers assuming a standard computational complexity assumption. The COE is a random matrix ensemble that describes the statistical properties of a large class of driven analog quantum systems in the thermalized phase according to an eigenstate thermalization hypothesis (ETH). To bolster our support for the ETH, we numerically examined specific examples of driven disordered Ising chains and 1D driven Bose-Hubbard model. Our findings suggest that these driven systems could be practical candidates for a sampling quantum advantage.

This research provides a complexity statement not only on a particular model but on an entire class of analog quantum systems when they are in the same quantum phase. The findings are of broad interest to the experimental community as periodically driven systems have been implemented experimentally with current available quantum hardware. Recently, sampling from a driven thermalized Bose-Hubbard model has been experimentally implemented with an ultra-cold atom platform up to 32 sites and 20 atoms.

📌 Key results

– We give analytical evidence of the computational hardness of sampling from the COE dynamics.
– We provide numerical results showing that COE statistics and reaching the anti-concentrated Porter-Thomas distribution with polynomially many cycles can be obtained from driven quantum Ising and Bose-Hubbard models for realistic parameters.

📌 Journal :
https://iopscience.iop.org/article/10.1088/2058-9565/acbd69

#QIS #IFNU #PhysicsNaresuan