Double dimensional reduction of M5-brane action in Sen formalism

#ResearchHighlight

🛎 Double dimensional reduction of M5-brane action in Sen formalism

📌 Authors: Anajak Phonchantuek*,** and Pichet Vanichchapongjaroen*

*The Institute for Fundamental Study “The Tah Poe Academia Institute”, Naresuan Univ., Thailand
**Development and Promotion of Science and Technology Talents Project (DPST Scholar)

📌 āļ„āļ§āļēāļĄāļŠāļģāļ„āļąāļāđāļĨāļ°āļ—āļĩāđˆāļĄāļē

āļāļēāļĢāļŠāļĢāđ‰āļēāļ‡āđāļ­āļ„āļŠāļąāļ™āļŠāļģāļŦāļĢāļąāļš āđ€āļ­āđ‡āļĄ5-āđ€āļšāļĢāļ™ āļ—āļĩāđˆāļŠāļĄāļšāļđāļĢāļ“āđŒ āļ‹āļķāđˆāļ‡āļ„āļđāđˆāļ„āļ§āļšāļāļąāļšāļžāļ·āđ‰āļ™āļŦāļĨāļąāļ‡āļ„āļ·āļ­āļ‹āļđāđ€āļ›āļ­āļĢāđŒāļāļĢāļēāļ§āļīāļ•āļĩāļŠāļīāļšāđ€āļ­āđ‡āļ”āļĄāļīāļ•āļī āđ„āļĄāđˆāļŠāļēāļĄāļēāļĢāļ–āļ—āļģāļ­āļĒāđˆāļēāļ‡āļ•āļĢāļ‡āđ„āļ›āļ•āļĢāļ‡āļĄāļēāđ„āļ”āđ‰ āļŠāļēāđ€āļŦāļ•āļļāļŠāļģāļ„āļąāļāļŠāļēāđ€āļŦāļ•āļļāļŦāļ™āļķāđˆāļ‡āļĄāļēāļˆāļēāļāļāļēāļĢāļĄāļĩāļ­āļĒāļđāđˆāļ‚āļ­āļ‡āļŠāļ™āļēāļĄ 2-āļŸāļ­āļĢāđŒāļĄ āļ—āļĩāđˆāļĄāļĩāļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāļŠāļ™āļēāļĄ 3-āļŸāļ­āļĢāđŒāļĄ āļ‹āļķāđˆāļ‡āļ„āļđāđˆāļāļąāļ™āļāļąāļšāļ•āļąāļ§āđ€āļ­āļ‡ āđ‚āļ”āļĒāļŠāļ™āļēāļĄāļ”āļąāļ‡āļāļĨāđˆāļēāļ§āđ€āļ›āđ‡āļ™āļŦāļ™āļķāđˆāļ‡āđƒāļ™āļŠāļ™āļēāļĄāļšāļ™ āđ€āļ­āđ‡āļĄ5-āđ€āļšāļĢāļ™ āđāļĄāđ‰āđāļ•āđˆāļāļēāļĢāļŠāļĢāđ‰āļēāļ‡āđāļ­āļ„āļŠāļąāļ™āļŠāļģāļŦāļĢāļąāļšāļŠāļ™āļēāļĄāļ”āļąāļ‡āļāļĨāđˆāļēāļ§āļāđ‡āđ„āļĄāđˆāļ­āļēāļˆāļ—āļģāļ­āļĒāđˆāļēāļ‡āļ•āļĢāļ‡āđ„āļ›āļ•āļĢāļ‡āļĄāļēāđ„āļ”āđ‰ āļ§āļīāļ˜āļĩāļāļēāļĢāļĄāļēāļ•āļĢāļāļēāļ™āļ§āļīāļ˜āļĩāļŦāļ™āļķāđˆāļ‡āļ—āļĩāđˆāļˆāļ°āļŠāļĢāđ‰āļēāļ‡āđāļ­āļ„āļŠāļąāļ™āļ”āļąāļ‡āļāļĨāđˆāļēāļ§ āđāļĨāļ°āļ™āļģāđ„āļ›āļ‚āļĒāļēāļĒāļœāļĨāļŠāļĢāđ‰āļēāļ‡āđāļ­āļ„āļŠāļąāļ™āđ€āļ­āđ‡āļĄ5-āđ€āļšāļĢāļ™ āļ—āļĩāđˆāļŠāļĄāļšāļđāļĢāļ“āđŒāđ„āļ”āđ‰ āļ„āļ·āļ­āļ§āļīāļ˜āļĩāļāļēāļĢāļ‚āļ­āļ‡ PST āļ§āļīāļ˜āļĩāļāļēāļĢāļ”āļąāļ‡āļāļĨāđˆāļēāļ§āļ™āļīāļĒāļēāļĄāļŠāļ™āļēāļĄāļŠāđˆāļ§āļĒāļ‹āļķāđˆāļ‡āđ„āļĄāđˆāļĄāļĩāļžāļĨāļ§āļąāļ• āđ€āļĄāļ·āđˆāļ­āđ„āļĄāđˆāļ™āļēāļ™āļĄāļēāļ™āļĩāđ‰ āļĄāļĩāļ­āļĩāļāļ§āļīāļ˜āļĩāļŦāļ™āļķāđˆāļ‡āļ‹āļķāđˆāļ‡āđ€āļĢāļĩāļĒāļāļ§āđˆāļēāļ§āļīāļ˜āļĩāļāļēāļĢāļ‚āļ­āļ‡ Sen āļ§āļīāļ˜āļĩāļāļēāļĢāļ™āļĩāđ‰āļĄāļĩāļžāļ·āđ‰āļ™āļāļēāļ™āļĄāļēāļˆāļēāļāļœāļĨāļ‚āļ­āļ‡āļ—āļĪāļĐāļŽāļĩāļŠāļ™āļēāļĄāļŠāļ•āļĢāļīāļ‡ āđƒāļ™āļ§āļīāļ˜āļĩāļ™āļĩāđ‰ āļŠāļ™āļēāļĄ 2-āļŸāļ­āļĢāđŒāļĄ āļ—āļĩāđˆāļĄāļĩāļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāļŠāļ™āļēāļĄ 3-āļŸāļ­āļĢāđŒāļĄ āđ„āļĄāđˆāđƒāļŠāđˆāļŠāļ™āļēāļĄāđ„āļĄāđˆāļœāļŠāļĄ āđāļ•āđˆāļ›āļĢāļ°āļāļ­āļšāļ‚āļķāđ‰āļ™āļˆāļēāļāļŠāļ™āļēāļĄ 2-āļŸāļ­āļĢāđŒāļĄ P āđāļĨāļ°āļŠāļ™āļēāļĄ 3-āļŸāļ­āļĢāđŒāļĄ Q āļ‹āļķāđˆāļ‡āļ—āļąāđ‰āļ‡āļŠāļ­āļ‡āļŠāļ™āļēāļĄāđāļ›āļĨāļ‡āđāļšāļšāđ„āļĄāđˆāļ›āļāļ•āļīāļ āļēāļĒāđƒāļ•āđ‰āļāļēāļĢāđāļ›āļĨāļ‡āļžāļīāļāļąāļ” āđāļ­āļ„āļŠāļąāļ™āļ—āļĩāđˆāļ›āļĢāļ°āļāļ­āļšāļ‚āļķāđ‰āļ™āļĄāļēāļˆāļēāļāļŠāļ™āļēāļĄ P āđāļĨāļ° Q āļŠāļēāļĄāļēāļĢāļ–āļŠāļĢāđ‰āļēāļ‡āđ„āļ”āđ‰ āđāļĨāļ°āļ‚āļĒāļēāļĒāļœāļĨāđ„āļ›āļŠāļĢāđ‰āļēāļ‡āđāļ­āļ„āļŠāļąāļ™āļŠāļģāļŦāļĢāļąāļš āđ€āļ­āđ‡āļĄ5-āđ€āļšāļĢāļ™ āļ—āļĩāđˆāļŠāļĄāļšāļđāļĢāļ“āđŒāđ„āļ”āđ‰

āđāļĄāđ‰āļ§āđˆāļēāļāļēāļĢāļŠāļĢāđ‰āļēāļ‡āđāļ­āļ„āļŠāļąāļ™āļŠāļģāļŦāļĢāļąāļš āđ€āļ­āđ‡āļĄ5-āđ€āļšāļĢāļ™ āļ—āļĩāđˆāļŠāļĄāļšāļđāļĢāļ“āđŒāđ‚āļ”āļĒāđƒāļŠāđ‰āļ§āļīāļ˜āļĩāļāļēāļĢāļ‚āļ­āļ‡ Sen āļŠāļēāļĄāļēāļĢāļ–āļ—āļģāđ„āļ”āđ‰ āđāļ•āđˆāđāļ­āļ„āļŠāļąāļ™āļ”āļąāļ‡āļāļĨāđˆāļēāļ§āļ­āļĒāļđāđˆāđƒāļ™āļĢāļđāļ›āđāļšāļšāļ—āļĩāđˆāļĒāļēāļāļ•āđˆāļ­āļāļēāļĢāļĻāļķāļāļĐāļē āđ€āļ™āļ·āđˆāļ­āļ‡āļˆāļēāļāļĄāļĩāļāļēāļĢāļ„āļđāđˆāļ„āļ§āļšāļāļąāļšāļ„āļ§āļēāļĄāđ‚āļ™āđ‰āļĄāļ–āđˆāļ§āļ‡āđƒāļ™āļĨāļąāļāļĐāļ“āļ°āļ—āļĩāđˆāļ‹āļąāļšāļ‹āđ‰āļ­āļ™āđ€āļ›āđ‡āļ™āļ­āļĒāđˆāļēāļ‡āļĄāļēāļ āļ§āļīāļ˜āļĩāļāļēāļĢāļŦāļ™āļķāđˆāļ‡āļ—āļĩāđˆāļˆāļ°āļŠāđˆāļ§āļĒāļ—āļģāđƒāļŦāđ‰āđ€āļ‚āđ‰āļēāđƒāļˆāđāļ­āļ„āļŠāļąāļ™āļ”āļąāļ‡āļāļĨāđˆāļēāļ§āļĄāļēāļāļ‚āļķāđ‰āļ™ āļ„āļ·āļ­āļāļēāļĢāļĻāļķāļāļĐāļēāļāļēāļĢāļĨāļ”āļĄāļīāļ•āļī āđƒāļ™āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰ āđ€āļĢāļēāđ€āļ™āđ‰āļ™āļĻāļķāļāļĐāļēāļāļēāļĢāļĨāļ”āļĄāļīāļ•āļīāļ—āļąāđ‰āļ‡āļŠāļ­āļ‡āļŠāđˆāļ§āļ™āļ‚āļ­āļ‡āđāļ­āļ„āļŠāļąāļ™ āđ€āļ­āđ‡āļĄ5-āđ€āļšāļĢāļ™ āļšāļ™āļ§āļ‡āļāļĨāļĄ āļāļĨāđˆāļēāļ§āļ„āļ·āļ­ āļŦāļ™āļķāđˆāļ‡āđƒāļ™āļĄāļīāļ•āļīāļ‚āļ­āļ‡āļžāļ·āđ‰āļ™āļŦāļĨāļąāļ‡āļĄāļĩāļĨāļąāļāļĐāļ“āļ°āđ€āļ›āđ‡āļ™āļ§āļ‡āļāļĨāļĄ āđāļĨāļ°āļŦāļ™āļķāđˆāļ‡āđƒāļ™āļĄāļīāļ•āļīāļ‚āļ­āļ‡ āđ€āļ­āđ‡āļĄ5-āđ€āļšāļĢāļ™ āļˆāļ°āļžāļąāļ™āļĢāļ­āļšāļ§āļ‡āļāļĨāļĄāļ”āļąāļ‡āļāļĨāđˆāļēāļ§ āļ™āļ­āļāļˆāļēāļāļ™āļĩāđ‰ āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļĒāļąāļ‡āļŠāļ™āđƒāļˆāļāļēāļĢāļĻāļķāļāļĐāļēāļāļēāļĢāļ‚āļĒāļēāļĒāļœāļĨāļ‚āļ­āļ‡āļāļēāļĢāļĨāļ”āļĄāļīāļ•āļīāļ—āļąāđ‰āļ‡āļŠāļ­āļ‡āļŠāđˆāļ§āļ™āļŠāļģāļŦāļĢāļąāļšāļ›āļĢāļīāļ āļđāļĄāļīāđƒāļ™āļĨāļąāļāļĐāļ“āļ°āļ­āļ·āđˆāļ™ āđ† āļ”āđ‰āļ§āļĒ

📌 āļœāļĨāļŠāļąāļĄāļĪāļ—āļ˜āļīāđŒāļŠāļģāļ„āļąāļ

– āđ€āļĢāļēāđāļŠāļ”āļ‡āđƒāļŦāđ‰āđ€āļŦāđ‡āļ™āļ§āđˆāļēāļāļēāļĢāļĨāļ”āļĄāļīāļ•āļīāļ—āļąāđ‰āļ‡āļŠāļ­āļ‡āļŠāđˆāļ§āļ™āļ‚āļ­āļ‡āđāļ­āļ„āļŠāļąāļ™ Sen āļ—āļĩāđˆāđ€āļ›āđ‡āļ™āļāļģāļĨāļąāļ‡āļŠāļ­āļ‡āđƒāļ™ 6 āļĄāļīāļ•āļī āļšāļ™āļ§āļ‡āļāļĨāļĄ āļˆāļ°āđƒāļŦāđ‰āļ—āļĪāļĐāļŽāļĩāđāļĄāđ‡āļāļ‹āđŒāđ€āļ§āļĨāļĨāđŒāđƒāļ™ 5 āļĄāļīāļ•āļī āļ—āļąāđ‰āļ‡āļŦāļĄāļ”āļŠāļ­āļ‡āļ—āļĪāļĐāļŽāļĩ āļ‹āļķāđˆāļ‡āļĄāļĩāđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļŦāļĄāļēāļĒāļ‚āļ­āļ‡āļžāļĨāļąāļ‡āļ‡āļēāļ™āļˆāļĨāļ™āđŒāđāļ•āļāļ•āđˆāļēāļ‡āļāļąāļ™ āļŠāļ™āļēāļĄāđāļĄāđ‡āļāļ‹āđŒāđ€āļ§āļĨāļĨāđŒāļ—āļĩāđˆāļĄāļĩāđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļŦāļĄāļēāļĒāļ‚āļ­āļ‡āļžāļĨāļąāļ‡āļ‡āļēāļ™āļˆāļĨāļ™āđŒāļ—āļĩāđˆāļ–āļđāļāļ•āđ‰āļ­āļ‡ āļĄāļĩāļāļēāļĢāļŠāđ€āļāļĨāđƒāļ™āļĨāļąāļāļĐāļ“āļ° 1/r āđ‚āļ”āļĒāļ—āļĩāđˆ r āđ€āļ›āđ‡āļ™āļĢāļąāļĻāļĄāļĩāļ‚āļ­āļ‡āļ§āļ‡āļāļĨāļĄ āļœāļĨāļ”āļąāļ‡āļāļĨāđˆāļēāļ§āļŠāļ­āļ”āļ„āļĨāđ‰āļ­āļ‡āļāļąāļšāļŠāļĄāļĄāļēāļ•āļĢāļ„āļ‡āđāļšāļš

– āđ€āļĢāļēāđāļŠāļ”āļ‡āđƒāļŦāđ‰āđ€āļŦāđ‡āļ™āļ§āđˆāļēāļāļēāļĢāļĨāļ”āļĄāļīāļ•āļīāļ—āļąāđ‰āļ‡āļŠāļ­āļ‡āļŠāđˆāļ§āļ™āļ‚āļ­āļ‡āđāļ­āļ„āļŠāļąāļ™ āđ€āļ­āđ‡āļĄ5-āđ€āļšāļĢāļ™ āđāļšāļš Sen āļšāļ™āļ§āļ‡āļāļĨāļĄ āļˆāļ°āđƒāļŦāđ‰āļ—āļĪāļĐāļŽāļĩāļ—āļĩāđˆāļŠāļĄāļšāļđāļĢāļ“āđŒāļ‚āļ­āļ‡ āļ”āļĩ4-āđ€āļšāļĢāļ™ āļŦāļĢāļ·āļ­ āļ„āļđāđˆāļ‚āļ­āļ‡āļ”āļĩ4-āđ€āļšāļĢāļ™ āļ‚āļķāđ‰āļ™āļ­āļĒāļđāđˆāļāļąāļšāļ§āļīāļ˜āļĩāļāļēāļĢāđ€āļĨāļ·āļ­āļāļ•āļąāļ§āļ”āļģāđ€āļ™āļīāļ™āļāļēāļĢāļ‰āļēāļĒāļ—āļĩāđˆāđ€āļŦāļĄāļēāļ°āļŠāļĄ

– āđ€āļĢāļēāđ€āļŠāļ™āļ­āļ‚āļąāđ‰āļ™āļ•āļ­āļ™āļ§āļīāļ˜āļĩāđƒāļ™āļāļēāļĢāļ‚āļĒāļēāļĒāļœāļĨāļ‚āļ­āļ‡āļāļēāļĢāļĨāļ”āļĄāļīāļ•āļīāļ—āļąāđ‰āļ‡āļŠāļ­āļ‡āļŠāđˆāļ§āļ™āļšāļ™āļ›āļĢāļīāļ āļđāļĄāļīāđƒāļ™āļĨāļąāļāļĐāļ“āļ°āļ­āļ·āđˆāļ™ āļˆāļēāļāļ™āļąāđ‰āļ™ āđ€āļĢāļēāđāļŠāļ”āļ‡āđƒāļŦāđ‰āđ€āļŦāđ‡āļ™āļ§āđˆāļēāļ‚āļąāđ‰āļ™āļ•āļ­āļ™āļ§āļīāļ˜āļĩāļ”āļąāļ‡āļāļĨāđˆāļēāļ§āđƒāļŠāđ‰āđ„āļ”āđ‰āļœāļĨāļāļąāļšāļāļēāļĢāļĻāļķāļāļĐāļēāđāļ­āļ„āļŠāļąāļ™āļāļģāļĨāļąāļ‡āļŠāļ­āļ‡āļ—āļĩāđˆāļžāļąāļ™āļĢāļ­āļšāļ—āļ­āļĢāļąāļŠ āđƒāļ™āļ•āļąāļ§āļ­āļĒāđˆāļēāļ‡āļ™āļĩāđ‰ āđ€āļĢāļēāļ•āļĩāļ„āļ§āļēāļĄāđ„āļ”āđ‰āļ§āđˆāļē āļ āļēāļ§āļ°āļ„āļđāđˆāļāļąāļ™āđāļšāļš S āļŠāļģāļŦāļĢāļąāļšāļ—āļĪāļĐāļŽāļĩāļĨāļ”āļĄāļīāļ•āļīāļ™āļąāđ‰āļ™ āđ€āļ›āđ‡āļ™āļœāļĨāļĄāļēāļˆāļēāļāļāļēāļĢāļŠāļĨāļąāļšāļ•āļąāļ§āļ”āļģāđ€āļ™āļīāļ™āļāļēāļĢāļ‰āļēāļĒāđƒāļ™āļ—āļĪāļĐāļŽāļĩāđ€āļ•āđ‡āļĄ

📌 Motivation and background

The construction of a complete M5-brane action coupled to the background eleven-dimensional supergravity is non-trivial. This is largely due to a 2-form field with 3-form self-dual field strength, which is one of the degrees of freedom on M5-brane. The construction of a worldvolume action of this field itself is readily not straightforward. A standard way to remedy this which allows the extension to a complete M5-brane action is called the PST formalism. In this formalism, auxiliary fields with no dynamics are introduced. More recently, there is an alternative approach which is called the Sen formalism. This formalism is motivated from a result in string field theory. The independent field in this formalism are a 2-form field P and a 3-form field Q, both of which transform in non-standard way under diffeomorphism. In this formalism, the 2-form field with self-dual field strength is a composite field consisting of P and Q. It is possible to extend this construction to a complete M5-brane action in Sen formalism.

Although the construction of an M5-brane action in Sen formalism has been successful, the action itself is not easy to work with due to the complicated way in which it couples to gravity. One way to better understand the action and to understand how it couples to gravity is to study dimensional reduction. In this paper, we focus on double dimensional reduction of an M5-brane action on a circle. This means that one of the spatial dimensions of the background target space is compactified on a circle. Then, one of the spatial dimensions of the M5-brane worldvolume is wrapped around this circle. The generalisation for double dimensional reduction on some other spaces are also studied.

📌 Key results

– We have shown that double dimensional reduction of 6d Sen quadratic action on a circle gives a theory of two uncoupled Maxwell fields of opposite sign of kinetic terms. The field with correct sign of kinetic term scales like 1/r, where r is the radius of the circle. This result is as expected by the conformal symmetry.

– We have explicitly shown that double dimensional reduction of the Sen M5-brane action on a circle gives rise to the complete D4-brane action or the complete dual D4-brane action, depending on how projection operators are chosen.

– We have proposed an algorithm to compute double dimensional reduction of the Sen M5-brane action on some other spaces. We have shown that this algorithm is applicable to the quadratic action compactified on a torus. In this example, the S-duality of the reduced theory is simply a realisation of the swapping of projection operators in the full theory.

📌 Journal : https://link.springer.com/article/10.1140/epjc/s10052-023-11892-2

#IFTHEP #IFNU #PhysicsNaresuan